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THE GENERAL THEORY OF BLADE SCREWS.

INTRODUCTION.

The present theory gives & complete picture and an exact quantitative analysis of the
whole phenomenon of the working of the blade screw.! This theory not only includes all cases
of applications of blade screws, but also unites in a continuous whole the entire scale of states
of work conceivable for a blade screw.

For the study of the phenomenon of the working of blade screws, I adopt as fundamental
parameter a quantity which I call relative pitch. The relative pitch is the pitch of the trajectory
of & section of the screw blade, measured by taking the pitch of the blade section itself as unity.
I call specific function the ratio of the thrust power to the torque power of the blade screw.
The curve of the specific function, as shown in the annexed illustration,? unfolds the com-
plete cycle of all the states of the work possible for a secrew. For negative values, great in
absolute value, of the relative pitch, the specific function is directed toward the origin of the
coordinates by a sensibly rectilinear parabolic branch. Here we find ourselves in the region
of the screw working as a brake, characterized by the property that the fluid stream crossing
the area swept by the blades of the screw has the same sense as the velocity of the fluid
current directed on the screw. The sogment of this branch of the specific function which
is close to the origin and is indicated by dots on the annexed drawing corresponds to a
phenomenon discovered in a purely ‘analytical manner, for the first time, by the present
theory, which I have named the wortez ring working state. This phenomenon takes place in
the following order: One imagines the screw working in the above-mentioned brake state and
considers the progressive lessening of its translational speed. Under these conditions a moment
arrives when a surface of separation is formed in the wake of the screw across which there is
no fluid flow. Directly after its formation the surface of soparation resolves itself into two
surfaces; and a vortex ring, the axis of which coincides with the axis of the screw, appears in
the space thus formed. The two surfaces of separation which inclose the vortex ring move
progressively apart, and a moment arrives when one of these surfaces crosses the space swept
by the blades of the screw. This moment corresponds to the change of sense of the fluid stream
crossing the plane of the screw, and at that moment the screw tends to make an infinite number
of revolutions. The curve of the specific function reaches the origin by a cusp. This is
the whirling phenomenon,® immediately followed by a new brake state of work represented

by a loop on the curve of the specific function. This latter state of brake work is terminated
by the work of the screw at a fixed point, when the specific function once more reaches
the origin. The-blade screw fulfills then the functions of a ventilator, a helicoidal pump or a
helicopter. When we enter the region ~* positive values of the relative pitch, the screw

1 The author allows himself to introduce the term *blade screw '’ as general designation of any kind of screw fitted with blades.

2 See also figure A, p. 40.

3 The whirling phenomenon is often observed in the braking of ships by means of the screw. ‘There is a moment when a sudden jerk on the
engines is observed, and the engines themselves tend to accelerate. In practical navigation this phenomenon has been considered as accidental.
It is, however, a quite regular phenomenon, which detects the moment of change in the direction of the stream of water flowing across the screw.

]
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becomes propulsive and the specific function represents the efficiency of the propeller. After
having passed a maximum, the specific function decreases rapidly, and, passing through zero
value, brings us to a short interval of breakage, which asymptotically goes over to the turbine
work of the screw. In this latter interval the specific function represents the inverse of the
officiency of the turbo-motor. After having passed a minimum which corresponds to the
maximum of the turbo-motor efficiency, the specific function, by a parabolic' branch, quasi-
rectilinear, disappears into infinity, which corresponds to the stoppage of the screw in a current
directed on the screw. All this sequence of phenomena corresponds to the rotation of the
screw in one sense. By the rotation of the screw in an inverse sense, we obtain the series of
phenomena of reverse rotation, which forms, as it were, the reflected image of the phenomensa
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of direct rotation. The general equation of the specific function thus obtained leads directly
to the determination of the most favorable conditions of screw working in all the series of its
applications. The maxinta and minima of the specific function correspond exactly to the
maximum of efficiency of the different working states of a blade screw, separated from one
another by zero or infinite values of the specific function. We are thus naturally brought to
methods of calculation of blade screws in conditions of maximum efficiency. ‘The system of
fundamental equations obtained by us thus shows all the properties of the blade screws in all
the variety of their working conditions. We thus obtain a complete solution of the whole
series of those important problems which have been standing so long owing to the requirements
of practice in the applications of blade screws, and which have, up to the present, remained
without any satisfactory solution.
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I have arrived at all these results, on the one hand, by the conceptional definition of the
screw problem of which the normal working conditions are the expression, and, on the other
hand, by the employment of a method of solving hydrodynamic problems, which I call the
empirical-theoretical method. These two sides of the question are of such importance that I
must stop to examine them generally. ‘

What is exactly meant by speaking of the exact solution of a problem? When a new
problem is raised, before proceeding to its solution two stages should be distinguished. The
first, the most difficult to reach, is that in which the thought seeks to formulate the statement
of the question. It is only afterwards, when the problem has been formulated, that we can,
properly speaking, approach a solution. All the great scientific conquests of human thought .
have begun by a powerful conception of the problem to be solved. The conceptional defini-
tion of a problem is distinguished by the fact that it is only an abstraction from the world of
our sensations, only a mental approximation to the reality of the external world. A simple
example will suffice to give point to my idea. Let us take the problem of the motion of a
rigid body. It is a well-known fact that in nature no solids exist in the absolute meaning of
mechanics. So all the mechanics of the solid is only an-approximation to reality; but the
whole value of this approximation lies in the fact that numerous natural bodies approach in
certain conditions so nearly to an absolute rigidity that the established laws of the mechanics
of solids give a description of actual solids, which, in general, exceeds all the demands of the
- applied sciences. The problem once stated, an exact solution can be sought. It is only of the
exactitude of the solution that there can be question. All problems in themselves can only
be approximations to reality. That is why we should never insist too much on finding exact
solutions of problems which present too considerable difficulties. The whole value of numerous
methods of approximation lies in the fact that the results obtained are, so to speak, of the same
degree of exactitude as the conception of the problem. Important problems remain long with-
out being solved only because their very conception has not been sufficiently thought out.
The blade screw is an example of such. A more thorough conception, while making the solu-
tion easier, often brings us still nearer to reality.

The empirical-theoretical method to which I have had recourse for the solution of the
screw problem, presents a certain analogy to the general method of solving problems of the
theory of elasticity. At one time scientists tried to deduce the elastic properties of solid bodies
starting from the hypothesis of the molecular structure of bodies. But real progress in the
theory of elasticity was only obtained when this risky method was abandoned. In order to
establish the elastic properties of solids, the modern theory of elasticity has recourse to direct
experiment, and, based on the data of thislatter, it connects the complex cases with the simple
one by the help of the fundamental propositions of mechanics. This, in my opinion, is what
should be done with regard to the solution of the problem of hydrodynamic resistance. Find
out the factors which depend on the physical nature of the fluid and the surfaces in contact,
and for their numerical values fall back on direct experiment. Then from the knowledge of these
factors, once they are determined, the results which mechanics allow to be established must
be drawn. I know well all the methods which have been proposed for the solution of the
problem of hydrodynamic resistance of fluids. These methods have all the following scheme:
First of all, by aid of some hypothesis the fundamental characteristics .of the flow around the
solid in motion are sought. Afterwards the distribution of velncities in the fluid mass is cal-
culated. From the latter one finds the pressure distribution, the resultant of which at the
stirface of the body ought to represent the hydrodynamic resistance of the fluid. Thus Euler’s
method consists in supposing the flow of the fluid to be continuous and allowing a potential
function for the fluid velocity. This conception of the phenomenon leads to the conclusion
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that all bodies immersed in a fluid do not show any hydrodynamical resistance, which is in
flagrant contradiction to experiment. In order to explain the phenomenon of fluid resistance,
Helmholtz has supposed the formation behind the body of surfaces of discontinuity, to
which he had been led in studying the flow of fluids through orifices. This method has been
developed by Kirchhoff and Lord Rayleigh. The value of the hydrodynamic resistance
obtained by this method is, however, less than that furnished by experiment. The cause
of this divergence lies in the fact that this type of flow is unstable, the viscosity of the
fluid destrovmg the surfaces of discontinuity. Of late years W. M. Kutta,' having estab-
lished, in the case of movements parallel to a plane, the relation between the circulation
over a contour embracing a cylindrical solid and its hydrodynamical resistance, tried to
determine this latter by studying some types of flow around solids, which, although
stream-lined, furnished a finite value of the circulation, around the cylinder. To-Messrs. S.
Tchapliguine and N. Joukowski? we owe numerous developments and applications of this
method. The authors of this theory have been able to calculate the lift furnished by the .
cylindrical body, but the value obtained does not fully agree with etperlment As for the
drag, it escaped their investigations. I have therefore endeavored to give a general demon-
stration of the theorem of circulation which explains this misunderstanding and which will
be found in Note IV at the end of this memoir. This theorem referred to above does not
furnish a zero value of the drag, and its authors arrived at this conclusion only by the fact
of supposing the fluid to be perfect, a hypothesis quite superfluous and entirely unneces-
sary for the establishment of this theorem. But this theorem, when understood in its widest
sense, does not lead to the solution of the problem of hydrodynaniic resistance, since the values
obtained for the circulation depend on the type of flow assumed, which still remains to be deter-
mined. . This latter question of the type of flow is excellently stated by M. V. Karman,® who pro-
poses to determine the hydrodynamical resistance starting from the estimation of the momen-
 tum of the vortices in quincunx, which are formed behind the cylindrical solid in uniform
rectilinear motion in a fluid. This theory, applied up to the present only to the most simple
cases, gives results which agree better than all the other theories with experiment. All the
attempts enumerated above, although quite erudite, can not give us the value of the hydro-
dynamical resistance for all the cases demanded by technique, and we are always obliged to
resort to experiment for its determination. How ought we to proceed when a problem of
hydrodynamical resistance bars the way to our investigations? It is by the empirical-theo-
retical method that I find the means of circumventing this difficulty. This method really
consists in reversing the question. We do not propose to calculate the hydrodynamical resist-
ance starting from the type of flow of the fluid, but, mverselv, it is the flow of the fluid that
we shall try to determine, starting with the knowledge of the hydrodynamical resistance meas-
ured expenmentally In general, the empirical-theoretical method can be characterized as
follows: All the space in which a hydrodynamical phenomenon takes place is divided into two
kinds of regions. In some of these regions the hydrodynamical resistances are, so to speak,
concentrated: in the others they are absent. The hydrodynamical resistances once experi-
mentally measured, the connections between the two kinds of regions are established by means
of the general theorems of mechanics and hydrodynamics, the phenomena which take place
in the second kind of regxon belng considered as under the laws of perfect fluids.

1 Clee \\ \{ luma, “Iilu.smrlo /\crom\utbcho Mitteilungen,?” 1902, and “Sitzumshcnoht( dor koehu.hchon Bay emchen ‘nkademle der Wis-
senschaften,” Munich, 1910 and 1911.

1 See *‘L’acrodynamique,” by N. Joukowski, Paris, 1916, Ch, Vl §% 18, 19, 20. .

$8ee V. Karman. * Nachrichten von der Kocniglichen Gesellschaft der Wissenschaften zu Géttingen,”” 1911, and * Physikalische Zeitschrift,”
912 . ’
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Returning after the preceding general considerations to the examination of our screw
problem, I shall begin by its definition. Like all conceptional definitions, this will only approxi-
mate reality to a certain degree. But the value of our formulation of the problem lies in the
' fact that it leads us to a solution of this latter which satisfies all the demands of the technique
of the application of blade screws.

The following, in accordance with the empirical-theoretical method, is my conception of
the blade-screw problem. In order to fix the ideas, I will assume that the screw is a propeller.
I divide the slip stream created by the rotation of the blade screw into three domains. The
first is that part of the stream which is disposed forward of the screw and up to the section of
the stream which the local phenomena created by the rotation of the blades have not reached.
The second domain, which contains the screw, immediately follows the first and incloses that
part of the stream immediately disturbed by the rotation of the screw blades. I define this
second domain by the condition that the differences of pressures on the two limiting sections
are actually equal to the thrust produced by the screw. The third domain is the direct pro-
longation of the second counted up to the narrowest section of the slip stream created by the
serew rotation. I assume that the flow of the fluid in the first and third domains obeys the
laws of perfect fluids, while the phenomena taking place in the second region are estimated by
direct experiment. As regards the fluid stream running out of the third region. I assume that
its velocity is progressively dissipated by the viscosity of the fluid. The above enumerated
conditions constitute what I call the normal conditions of the working of a blade screw. 1 call
neighboring conditions all the circumstances which deviate from normal conditions.

The conception of a problem can only be judged by the conclusions to which it leads. The
results stated in this memoir will, T hope, be the most eloquent evidence in favor of our con-
ception of the screw problem. I should like to mention that it has been quite impossible for
me to deal with all the questions which my conception of the screw problem raises. I have
concentrated my efforts above all on the problems which appear to me to be the most important
for practice. Time itself, as it passes; will, no doubt, reveal, better than I may have been
able to do here, many sides of the widespread screw problem upon which I have often only
touched. In many cases I may have only raised the veil of mystery which up to the present
has concealed so jealously from our eyes many sides of the phenomenon of the blade screw
working, and have outlined only their general picture. But I allow myself to believe that the
results which I have obtained are fully sufficient for the exact calculation, in full certitude. of
blade screws of the highest possible efficiency for the states of work submitted by me to a
detailed study. ' »

It is also to be mentioned that, strictly speaking, the blade-screw theory can only be an
integral theory, because in principle the problem of calculation of the hydrodynamical resistance
is defined by integral relations. But the present theory is rather a differential theory, in the
sense that it is based on a system of differential relations. The possibility of such a simplifica-
tion is the result of some assumptions which seem to be so close to reality, by the results to
which they lead, that the transition to a necessarily more complicated integral' theory is not
practically demanded.

To some it may seem that this theory contains many assumptions. But I must say that
the present theory contains fewer assumptions than any earlier theory. I have only devoted
special attention to indicate all the assumptions made, which was often neglected- And I will
also ask that one consider all the assumptions made, not so much in themselves as in the con-
sequences to which they lead.

1 ‘The general outlines of the blade-screw integral theory will be found in Note VT at the end of this Memoir.
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I wish also to point out to those about to verify the present theory by experiment two
circumstances which disturb, as it were, the purity of the phenomenon: on the one hand, the
deformation of the screw blades, on the other hand, the deviation of the fluid resistance from
the square law for the velocity. It often happens that when the angular velocity of the screw
increases, the blades undergo a certain distortion or flexion owing to the load to which they
are subjected. This causes a modification of the general shape of the blades, which although
generally small, has an immediate effect on the results of testing. As to the square law for the
velocity, it is well known to be only a first approximation, and can be applied only in certain
intervals of the velocity variation for which the coefficients of resistance ought to be directly
measured. When the coefficients of resistance are taken as constant in large intervals of the
velocity variation the results of the calculations raise differences which have to be attributed
to the deviation of the fluid resistance from the square law for the velocity. '

In conclusion I shall give a general summary of the chief results obtained at this time in
this memoir.

Chapter I is devoted to the establishment of the system of fundamental equations relating
to the blade screw. The theorems of momentum and of moments of momentum are submitted
to a critical examination in their application to the screw. A complete picture of the flow of
the fluid in the slip stream created by the rotation of the screw is given. The examination of
the distribution of the pressures in this fluid stream leads to the generalization of Bernouilli's
theorem shown in Note II at the end of this memoir. The reasons which make negligible the
mutual influence of the different sections of a blade are indicated. It is shown that the effective
pitch alone, as opposed to the constructive pitch, can serve to describe the properties of the screw.
The fundamental theorem registering the losses in the work of the screw is established. The
explicit expressions of the velocities in the slip stream produced by the rotation of the screw—
which T call slip and race velocities—are calculated both forward of the screw and in its wake,
as functions of the dimensions of the screw and the coefficients of resistance. Rigorous demon-
stration is given of the fact already known, but generalized by us, that the specific function is a
function of the relative pitch alone. All the general data of the empirical laws of fluid resistance
of which use is made are stated in Note IIT at the end of this memoir. :

Chapter 11 contains the general discussion of the 16 states of work which may establish
themselves for a blade screw. The existence of the vortex ring state and the whirling phenom-
enon are established. All the fundamental functions which enter the blade-screw theory are
submitted to a general analytical discussion. The general outline of the curve of the specific
function is examined. Finally. 1 have pointed out two limited cases of the work of the screw;
the screw with a zero constructive pitch and the screw with an infinite constructive pitch.
The consideration of the effective pitches explains the paradoxes apparently realized by these
cases. : :
Chapter I1I is devoted to the study of the propulsive screw or propeller. I give, first of all,
a comparative summary of the general formule for the working of the screw when advancing
and when standing at a fixed point.. I establish the fundamental proposition that when @ screw
is working ¢t a fized point the angles of attack of all the sections are constant, independently of the
angular velocity of rotation of the screw. Then the losses of the screw’s working power are esti-
mated. These 1 divide into three classes: the fan losses, the vortex losses and the resistance
Josses. The most favorable working conditions of a blade section are established. I establish
the approximate proposition that when a blade section works at its maximum of partial effi-
ciency, its slip measures the losses, its efficiency is equal to its relative pitch. An ezact standard
is given for choosing the most profitable outlines to adopt for screw blade sections. 1 deal with
the question of the limiting dimensions of the blades, their limited number and mutusl inter-
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ference. It is shown that, for given working conditions, there exists a limit power which a
screw can employ usefully. In the analysis of these questions the new notion of breadth ratio
is naturally evolved. Among other experiments, those of G. Eiffel with two coupled screws,
the bringing of which nearer together in the inverse sense of their rotation has increased the
efficiency, find a direct explanation. I then proceed to the valuation of the total work of
all the sections of the blades. A geometrical interpretation is given to the question of the
total efficiency of a blade screw, which establishes the direct relations between the partial and
total efficiencies. I examine the question of the effective pitch of the entire screw. I then
pass to the integration of the work of different sections of the blade, and give a general dis-
cussion of the different conditions which may occur in this integration. After an examination
of certain properties of the integrals obtained, I compare the working of the propeller in
forward motion with its working at a fixed point. The question of investigation of the best
contour to give to the blades is stated as a problem of calculus of variation. The problem
of design and the calculus of the dimensions of propellers is made the. subject of detailed
study. In order to solve the fundamental relations which give the value of the angle of
attack effectively established in each section and which can not be solved by ordinary methods,
I have prepared a monogram with four parameters, according to M. d’Ocagne’s method of
parallel tangent coordinates. A second monogram has been prepared in order to facilitate
the calculus of the function az and the load efficiency ¢, but this evidently has not the impor-
tance of the former, since the relations for which it gives numerical values may be calculated
directly. The problem of the calculus and design of propulsive screws is thus entirely solved
in the widest sense for all the demands of practice. Finally, I handle the important question
of the selcction and adaptation of screws. I am led to establish the new notion of uniform
families of screws divided into varieties. Up to the present this has gencrally been limited to
screws geometrically similar. I introduce the notion of screws which are, so to speak, hydro-
dynamically alike. When we compare screws among themselves, it is natural to imagine the
different sections of blades in similar working conditions, what directly leads to functional
relations connecting all screws of the same variety. Hydrodynamic similarity is realized when
homologous scctions of the blades of the screws of the family under consideration are geomet-
rically similar and when the relative fluid current is directed upon them under the same inci-
dences. It is thus that the notion of variety of a uniform family is revealed and characterized
by the similarity of homologous blade sections, independent of their effective pitches, and by the
identity of the system S(i) of effective angles of attack of all the sections of each blade of these
screws. But the introduction of the system of angles of attack S(i) as & fundamental character-
istic became possible when explicit relations were established between the effective angles of
attack, the geometrical and hydrodynamical characteristics of screws, and their working condi-
tions, results attained for the first time in this thesis. That is why we can now fix in this way the
. mutual orientations of the different sections of blades whose evolutes in the plane are geomet-
rically similar. It is the latter possibility which forms the basis of the theory of uniform
families and which leads us to the solution of the delicate problem of the selection and adaptation
of screws. I am thus brought to divide screws into three kinds—major screws, optima or
maxima serews, and minor screws—all of which essentially differ in their general properties.
T establish three fundamental relations connecting all the screws of one variety and allowing of
o direct solution, by the reading of a simple diagram, of all the infinite series of screws satisfy-
ing the conditions of speed, power, and number of revolutions for a given case. I indicate
the process of the testing screw for choosing propellers in case the drag or head resistance of the
vehicle of locomotion in view is unknown, which is usually the case in practice. The influence
of the number of revolutions on the efficisncy and size of screws is examined in outline. Note
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V, at the end of this article, gives the geometrical basis of the conventions used for screw
drawings.

. Chapter IV summarizes a new method of determining the coefficients of fluid resistance
based on the properties of the screw revealed by the present theory. This method forms, so
to speak, the basis of all the experimental data necessary for the calculus of screws in exactly
the same conditions of screw working. This is one of the most convenient methods, since it
only demands tests at a fixed point of screws with plane-radial blades. I give a brief summary
of the general properties of this new type of plane-radial screws, of which the method I stated
above establishes an important application. This short incursion into the domain of screws
working at a fixed point easily shows us how copiously the working of the screw in all the
deviations of its applications, of which the working at a fixed point has scemed until now the
most difficult to grasp, has been effectually included in the present theory. We find to the
contrary in the light of the actual theory that it is the most simple case.

This first memoir thus contains, besides a general summary of the whole screw problem,
a detailed study of the propulsive screw—that is, the propeller—and the different questions
in connection with it. A sécond memoir, directly continuing this one, will contain a special
study of screws at a fixed point in their different applications, principally when used as fans
and as helicopters, as well as a detailed study of the turbo-motor screws, especially as aerotur-
bines, that is to say, as windmills.

Finally, I can not refrain from expressing the wish to see special laboratories set apart
for the special study, in the light of the present theory, of the domain of the blade screw, still
so new, so widespread, and important from the point of view of universal social economy. It
is sufficient to bear in mind for one moment the important uses to which blade screws may be
applied, if only in shipping and aeronautics, without mentioning other applications, such as
fans, turbines, etc.—to imagine the enormous supplies of energy which the screw is the instru-
ment of utilizing—to see the importance arising from its study. Every percentage gained in
the efficiency of screws is expressed by an equivalent total of multimillions of fuel economy.
All the power of marine and aerial fleets is directly based on the perfection of the screws
employed. The screw thus appears as an important State Question, and that is why nothing
that can contribute to its perfection should be neglected. The results obtained by the present
theory will be valued the more quickly and powerfully the more rapidly are created special
organizations furnished with all the necessary material for the pursuit of the possibilities here
developed. The program of activity of such laboratories is already drawn up. Tools and
instruments for all the indispensable tests should be collected, and every effort concentrated
to obtain the whole of the experimental data necessary for the calculation of screws. The
principal aim of such an establishment should be the standardizing of all screws necessary for
the development of the technical arts of the State. The screw problem is of such importance
that groups of competent specialists should be devoted to its special study and charged to
watch over its highest and most perfect development. Will those to whom the importance of
the creation of such special laboratories—for the study of the blade screw—is more than evident
excuse me for these pleas in their favor which I have allowed myself to express here ?

The main results contained in this memoir were in the hands of the author already at the
end of 1915. Their publication in Russian was begun in 1916, but only the first two chapters
and the first half of the third chapter were edited at the beginning of 1917, further publication
having been stopped by the outbreak of the revolution in Petrograd.

GEORGE DE BOTHEZAT.
‘Washington, D. C.
November 1918,
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NOTATION.
UNIFORMLY EMPLOYED IN THE PRESENT MEMOIR.

screw diameter.

effective pitch of a blade section.

distance of a blade section from screw axis.

breadth of a blade section.

area of a blade element; AA=>bAr.

number of blades.

number of revolutions of the screw per second.
angular velocity of the screw; Q=2xN.

translatory speed of the screw along its axis.

partial torque due to the elements, of all the blades, disposed at the same distance from the screw axis.
partial thrust due to these same blade elements.

resultant torque applied to the screw axis. .

resultant thrust.

sections through the slip stream.

distances to the screw axis of a point taken in the surfaces S, §’, §”.

annular elements of the surfaces §, §/. §7.

slip velocities in the sections 8, §, §”.

race velocities in the sections S, §/, §7.

fluid mass flowing in & unit of time through AS, ASY, AS”.

mass density of the fluid in which the screw is working.

resultant velocity of the fluid relative to a blade section.

fluid resistance of a blade element.

effective angle of attack (measured from zero line).

constructive angle of attack (measured from chord).

effective blade angle (inclination of the zero line of one blade section to the plane of rotation of the acrew).
constructive blade angle (inclination of the chord of one blade section to the plane of rotation of the screw).
angle between chord and zero line of a section. i=a-+7v ; e=y¢+v.

1ift coefficient.

drag coefficient.

coefficient of the resultant fluid resistance. AR=K,AAW3=kiaAW?; KiKi: kywki
angle between fluid resistance AR and zero line.

angles of AR with the normal to the zero line.

notation used for either 8x or 8r.

value of the angle of attack for which the fluid resistance AR is normal to the zero line.
breadth ratio; a=nb/2xr.

“gpecific function,” equal to the partml efficiency in the case of a propeller

relative pitch; z= V/NH.

advance; u=V/N. . . .

relative advance; ¢= V/ND. :
slip; s=1—~z.

load coefficient; AQ=gdAS V3.

total efficiency of the screw.

angle of attack of a blade section of a screw working at a fixed point.

partial efficiency at a fixed point.

Al the quantities relatmg to the work of the screw at a fixed point are marked by a sub zero.

fan efficiency.

fan losses.

vortex losses.

resistance losses.

total losses; p=po+pet+pr

total thrust power developed by a propeller.

total torque power absorbed by a propeller.

system of angles of attack under which the blade sections are working.



CraPTER 1.
THE FUNDAMENTAL EQUATIONS.

Let us consider an unlimited fluid mass, in which is immersed a blade screw rotating with
the uniform angular velocity @ !/sec. around its axis and having a uniform translation with
the velocity V m#/sec. along that axis. Let us examine, in their general outlines, the flow
phenomena produced by the blade screw rotation in the surrounding fluid medium. We shall
assume, to fix the ideas, that we have to do with a propulsive screw or propeller.

The relativity principle of hydrodynamics allows us to consider either the screw moving
with the uniform velocity ¥ in an immobile fluid mass or the translationless screw plunged
in a fluid stream directed with the velocity Vin
inverse sense on the screw parallel to its axis.
Considering the latter case, viz, the screw im-
mersed in a fluid stream parallel to its axis,
the following is observed: The screw rotation
creates a fluid stream, generally called slip
stream, whose section in the neighborhood of
the screw is very nearly equal to the area
swept by the blades of the screw. The velocity
of the flow inside that slip stream differs from
the velocity V. A velocity increase is already
observed in front of the screw, but it is in the
wake, in the narrowest section of the slip
stream, that the largest increase of velocity is
observed. Beyond its translational motion,
the fluid in the slip stream has also a rota-
tional motion, so that the motion of the fluid
particles in the slip stream is 2 helicoidal one.

Let us divide the slip stream created by
the rotation of the screw into three domains.
The first domain is constituted by the part of
the slip stream disposed in front of ‘the screw.
This domain is included between the section S,
of the slip stream taken at such a distance from
the screw that the flow velocity in it is still
equal to V, and the section 8 directly in front of the screw, but, however, at such a distance
from the latter that the flow in it is not disturbed by the local phenomena created by the ro-
tation of the blades of the screw. The exact position of this last section S will appear in the
following: The second domain contains the screw and is included between the sections S and
8’ of the slip stream defined by the condition that the sum of the differences of the pressure
in these sections S and 8’ is equal to the resultant thrust of the screw. These sections will
be submitted in the following to a supplementary condition which will specify them exactly.
The third domain is formed by the slip-stream running off the screw and is included between
the section 8’ and the narrowest section S8” of the slip stream. The sections §, §’, and §”
will be, in the general case, surfaces having the axis of the screw as axis of symmetry. In
figure 1 these sections are represented in a purely conventional manner.

16
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Let us decompose the velocities of the fluid particles in the section § into two components;
one axial (see fig. 1) which we will designate by ¥V +u, the velocity v representing the increase of
the flow velocity already existing in the section §; the other tangential component, which
we will designate by rw where r is the distance to the screw axis of a fluid particle crossing the
section . As for the radial components of the velocities of the particles in the section S, as
well as in the sections S’ and S’/ of the slip stream, we will consider them as negligible, these
velocities having very small values for the states of work of the screw which are of practicaj
importance. The states of work of the screw for which the radial velocities have sensible
values will appear, besides, from the later developments of this memoir.! '

We will call slip velocity the velocity v, and race velocity the velocity rw. The slip and race
velocities have generally different values in different points of the section S. These velocities -
are, besides, periodical functions of the time, whose period depends from the period of the screw
rotation multiplied by the number of blades. But we will agree to consider » and rw as the

'mean values of the real periodical velocities, and under such conditions the velocities v and 7w
can be considered as constant in time and in space for all the points of the section S at equal
distances from the axis of the blade screw—evidently only for a determinate state of work of
the screw.? :

For the distribution of the pressures, just as for the distribution of the velocities, we will
only consider the mean values instead of the real periodical values. For all points situated in
one plane normal to the screw axis and at equal distances from it, the pressures will thus be
considered as equal. :

Let us decompose in a similar way the velocities of the fluid particles in the sections S’
and S? into axial components ,

V+v' and V+9°
and tangential components
‘ 4 , r'w’ and r%e”

The velocities v’ and »” will be named slip velocities in the sections §” and 8”, and '@’ and

r"w" race velocities in these same sections. To these last slip and race velocities have to be
applied all the remarks we have made in relation to the velocities » and rw.

As for the velocities of the particles of the slip stréam behind the section §”, we will admit,
in agreement with experiment, that they are progressively dissipated by viscosity.

Let us divide the whole slip stream into a series of regions of infinitely small thickness,
limited by surfaces of revolution, the locus of the stream lines of the mean velocities of the
slip stream, and having the screw axis as axis of symmetry. These annular regions will cut
off on the surfaces S, S/, and §” annular areas which we will designate respectively by

AS, AS’, AS”

and which are limited by circumferences having radii
r +—A—£-l—: v —A;J—
v, e A

1 The radial velocities have nonnegligible values only for states of work in the neighborhood of the vortex ring state,

1 The relations which exist between the real periodical velocities and their mean values have been studied by G. A. Crocco in his memoir
«gulla teoria analitica della eliche e su alcuni metodi sperimentali’’—Rendiconti degli studi ed esperienze eseguite nel laboratorio di costruzioni
seronautiche del battaglione specislist. Anno I, No. 1,30 Novembre, 1911. This memoir is reproduced almost completely in; French in the
«Technique Aeronautique,” Tome VI, 1912. No. 67, p. 184. No. 71, p. 321. No. 72, p. 363.

132025—19—2
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Let us designate by A M the fluid mass which flows in a unit of time through one of these
annular regions. On account of the continuity of the flow we must have

) AM=A8(V+)o=A8" (V+v')s=A8" (V+v")s

where § is the fluid mass density which we consider as constant in the whole fluid mass. The
constancy of the density is evident when we have to do with an incompressible fluid, such as
water, for example. But the density can also be considered as constant for a compressible
fluid, such as air, for example, so long as the flow velocities do not exceed values of the order
of about a hundred meters a second, because undeér such conditions the observed pressure
differences will be low, and, accordingly, the density variation negligible.

Throughout this memorandum we will use the metric units:

klg.—weight; meter; second.

In this system of units, for normal conditions of pressure and temperature (760 mm. and
15° centigrade) the density has the values

for water SQIOOM
mit
for air sax1/sX0 8¢
mit
Let us designate by AI and AI” the moments of inertia relative to the screw axis, of the
fluid mass A M considered in the annular sections AS and AS” respectively. We have:
9\ o Al=AMr; AI"=AMr" '

Taking into account the relations (1) and assuming the similitude of the flow conditions () in
the sections S and S” we get :
A8 V49" P Al

@) AS* = V4o "1 Tar
from which follows

(4) Al’=AI %’%",

. ! Exactly speaking, we want to say that {f all the Ar's are taken equal in the section 8, we admit all the Ar*’s in section S$” to be also equsi,
Under such conditions

r L

' m . A8 - SxrAr -—Bn_n
A" TTA T P PT
[ .
n being the number of Ar’s and Ar*’s respectively contained in r and 7. This hypothesis is justified by the following considerations: Exactly
AS _ rAr Ve
speaking, we have AT Vv
or going over from finite differences to differentials we get
V4o
rdr Vo 8"
and integrating ~
Vo
=) e s
when
V40"
() -7_’_—.3 const
we have

;’:;— const; hence ,;'.--eomt
or rjr*w=dr/dr’ and consequently

rdr _n
Cal o]
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All the foregoing is only the characteristic of the flow in the slip stream from a purely
kinematical standpoint. We will now proceed to the fundamental equations which connect
the work of the blade-screw with the motion of the surrounding fluid. We shall begin by an
examination of the pressure distribution in the slip stream and of the conditions which exist
on its boundary.

In each cross section of the shp stream the pressure is not constant, being generally lower
in the middle of the cross section, than on the periphery; this is on account of the rotation of
the fluid in the slip stream. In Note II, at the end of this memorandum, it is indicated in
general outlines how this pressure distribution can be calculated, and its general course is
represented in Fig. 2. In nearly all the practically important applications of blade-screws the
pressure differences in the slip stream cross sections are small, on account of the fact that the
fluid rotation is slow, and, besides, the pressure differences produced by the fluid rotation are
partially compensated by the curvature of the flow surfaces in the meridional planes of the slip
stream.

It is thus easy to see that in the section § the pressure is necessarily inferior to the outside
pressure p,. This follows from the fact that the velocity of the flow in the slip stream is increas-
ing as we approach the section S. We shall see in the following that when one passes from
section S to section S’ the pressure rises, and in the section 8’ is greater than p,. But from S’
to 8” the slip stream velocity is still increasing on account of the narrowing of the slip stream,
and therefore the pressure decreases, and in the section S” its departure from the pressure p,
is generally very small. In the definition, given in the following, of the normal conditions of
work of a screw, we shall assume the pressure in the section §” to have recovered its original
value, that is, retaken the value p,. This means that the action of the considered blade screw
is not to produce a difference of pressure, but consists in communicating a certain momentum
to the fluid. Under such conditions, beyond the section S” the slip stream diffusion must go
on at a quasi-constant pressure. The case of work of the screw with ‘‘pressure step” will form
the subject of a separate investigation.!

The existence of a pressure and a flow velocity difference between the inside and the outside
of the slip stream in the sections 8’ and S” leads us necessarily to admit, as follows from the
considerations shown in Note IT at the end of this memoir, that the boundary of the slip stream
must be a vortex sheath maintaining these pressure and velocity differences. The vortex intensity
and the curvature at each point of the slip stream vortex sheaths can be estimated when the
pressure and velocity differences on both its sides are known. The existence of the slip stream
vortex sheaths follows also from the fact that from each blade tip there must run off vortex fila-
ments, which dispose themselves on the slip stream boundary. This directly follows from William

which confirms the relation (1). Let us now show that in the great majority of practically important cases the condition (2) is satisfied:
1. For V=o, a.yd remarking as will be shown in the following that ¢*=2v, we have
V+v' v %o

Vo g~ g-—f=const

This case corresponds to th'e work of the screw at a fixed point.
II. For V having a large value relative to
Vo' _Vito V
Vo Vo ~ v 1= const

This case corresponds to propellers and to turbines.
III. For Vof the same order as v
V4o© o480 Sy

Vie =~ o= Cxe -—-3[2 o const
1IV. For y=const in the whole section of the slip stream,
In this case we evidently have
Viv* - V420
Vv ~ Vo —eonst

1 T call “ pressure step’’ the pressure difference which can exist between the outside pressure pe and the pressure p* in seotion S”, and which
in some special applications of blade screws can have very sensible values.
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Thomson’s (Lord Kelvin) theorem on the invariability of the circulation along a contour
accompanying the fluid in its motion. When following such a contour embracing a blade of the
screw and moving with the flow relative to the blade, the circulation along this contour must
maintain its value—so far as the fluid can be considered as perfect—which is fixed by Kutta’s
theorem.! Vortex tubes must thus run off the tips of the blades and dispose themselves on the
slip stream boundaries. The fluid in the slip stream having also a rotational motion, there
must also be formed a central vortex tube along the screw axis.?

We have thus reached a general picture of the flow in the slip stream created by the blade-
screw rotation. Let us now consider the slip stream as represented in figure 2 and apply to

' l it the momentum theorem

as well as the theorem of

moments of momentum. In

the case of steady motion

of a fluid these theorems can

be expressed by the follow-
ing unique proposition.?

When o fluid mass is in
a state of. steady motion the
resultant of the wrench of the
system of ALL THE EXTERIOR
FORCES applied to a portion
of the fluid mass limited by
a closed surface, and of the
screw of the inflow fluid
momentum (the outflow fluid
momentum having to be taken
in reversed sense) is equal
to zero.

Let us introduce the fol-
lowing notations: We will
call partial thrust and desig-
nate by AQ the axial
component of the resultant
fluid pressure on all the

' ' blade elements contained in
an annular volume (AS, AS’). The moment AC of this resultant pressure referred to the
screw axis will be named partial forque. The resultant thrust of the blade screw and the resultant
torque applied to its axis will be respectively designated by @ and C. The senses of the blade-
screw translation and rotation, when the latter is propulsive, will be adopted as positive senses
along the screw axis and around it. Let us, besides, designate by p, p’, and p” the pressures
respectively in the sections S, 8’ and 8”, the exterior pressure being designated by p,, as has
already been mentioned. As for the stresses on the boundaries of the slip stream, we shall
decompose them into components normal to the boundary surface, whose value is p,’, and into
components tangential to the boundary surface, the last being produced by the slip stream
friction against the surrounding fluid medium. It is easy to see that in the sections S, and 8’

Fia. 2.

1 8ee Note IV at the end of this memoir.

2 See the stereotypical photographs of Oswald Flamm. The air bubbles seen on these photographs dispose themselves along the axis of the
vortex tubes.

3 See Note I at the end of this memoir.
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(see fig. 2) the stresses will admit only normal components equal to p,, so that the tangential
stress components will have a sensible value only at the lateral boundaries of the slip stream.
We will designate by F” and F' the projections, on the screw axis, of the resultant of the tangential
components developed on the lateral surface of the slip stream for its portions respectively
included between S,, 8” and 8", S’,. The resultant moments, relative to the screw axis, of
these tangential components will be respectively designated by C’r for the portion of the slip
stream surface between S, and S”, and by Or for the portion of the slip stream surface between
8” and §’,.

~ Let us first apply the theorems of momentum and moments of momentum to the slip
stream portion between the extreme sections S, and 8’,. The only exterior forces acting on
this volume are. On one hand the thrust. —@ and the torque — (' (resultant action of the blade
screw on the fluid); on the other hand the friction forces developed on the boundaries of the
volume considered, whose resultants are F+ F’ along the screw axis and Cy+ ("r around the
screw axis, this under condition that the exterior pressure exerted on all the volume con-
sidered has a resultant equal to zero. As there is no fluid momentum variation for the volume
considered, we must have

F+F —-Q=0
Cr+Cls—C=0
or B .
(5a) , Q=F+F
(5b) O=0Ce+ s

We will consider as negligible the friction forces developed in the slip stream between the
sections S, and §”, that is, admit

F'=0; ("=~
because it is between the sections 8” and 8’,, where the slip stream diffusion takes place, that
is developed nearly the whole totality of the friction forces. Under such conditions we will have

(6a) Q=F
(6b) O=C%

which means that the friction forces developed between these sections S” and §’, equilibrate
the thrust and the torque of the blade screw.

Let us now apply the same theorems to the slip stream portion included between the
sections S” and S,’. The exterior forces applied to this volume are the resultants F' and (% of
the friction forces and the resultant of the pressures normal to the surface of this volume. This
last resultant is seen to be equal to —2A8” (p” —p,) when it is remarked that the uniform
exterior pressure p, considered as applied to the whole volume (87, §’;) must equilibrate itself.
The inflow fluid momentum, for this volume, has for its resultant along the screw axis

—ZAM(V+v")+ZAMV = —ZA My”
and for the resultant torque around the screw axis

—-ZAI"w".
We thus must have
‘ F-zZA87(p” —po) —ZAMv" =0
0{ “‘EAI”W” =0

But as we consider that in the section S” the pressure has already reached the value of the
exterior pressure p, we must simply have

7a) F=3ZA My
(7b) C Ce=ZAI"",
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Let us apply the above-mentioned theorems to the portion of the slip stream between
the sections S, and 8”. The exterior forces applied to this volume are: The friction forces
whose resultants are F” and C’r; the exterior normal pressures with the resultant =AS” (p” — p,);
the thrust —@ and the torque — (. The inflow momentum has for resultant

ZAM(V+0")—ZA MV =34 Mo”

ZAl"w"”

—Q+F’+2AS”(p”-—po) +ZA My =0
: —C+C's4+2AI"0" =0
But as we admit F, ("5, and 2AS” (p” — p,) to be negligible, we have
(8a) ) Q@ =AMy
(8b) ' - C=32AI""
. It must be remarked that effectively it is for the section §” that the fluid momentum variation
reaches its greatest value. These last relations (8a) and (8b) also follow from the comparison
of the relations (6) and (7).

Let us also apply our two theorems to the annular volume (AS,, AS”). As the friction
forces have been considered as negligible for the volume (S,, S”), they have also to be considered

as negligible for the volume (AS,, AS”). 'The resultant of the normal pressures being also con-
sidered as negligible, we have

We thus must have

(9a) : AQ=A My

(9b) AC=AI"w"
and, comparing with the relations (8) we see directly that
(10a) o Q==2A¢Q

(10b) C=3AC

This last consequence is of first importance. It justifies the partition of the slip stream into
annular regions and shows that the resultant thrust @ and the resultant torque € of the blade
screw can be considered as equal to the sums of the partial thrust AQ and partial torques AC
under the hypothesis made.! The relations (10) also establish the possibility of integrating
the partial thrust and torque along the blade. In other words the relations (10) show that
the mutual interference of the sections of the same blade can be admitted as negligible. What is,
in reality, the mechanism of the transmission of this blade section interference? It is specially
expressed by the pressure differences in the section S”. Thus the working conditions of blade
elements included in an annular volume such as (AS,, A8”) are submitted to the influence of
the pressure difference AS”(p” —p,) which is, exactly speaking, variable along the blade. But
this last pressure difference being negligible in comparison with the other forces acting on the
blade elements considered, the mutual interference of the blade sections turns out to be also
negligible.

Let us finally apply the momentum theorem to the fluid mass contained in the annular
volume (AS, AS’). The exterior forces applied to this volume are the pressure of the blades
on the fluid, whose resultant along: the screw axis is equal to —AQ, and the resultant of the
exterior pressure acting on this volumes, equal to

pIASI_pAS,

1 It will be easy to see that the same conclusion would have been reaghed if neither the friction forces nor the pressure differences TAS”(p”~pa)
had been neglected.
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when one neglects the friction forces acting on the boundaries of this volume. On the other
hand, as in the most important practical applications of blade screws the sections S and §’
come out to be close to the blade screw, and as we neglect the radial velocities we have

AS=~AS’ and vz’
and on account of the flow continuity we will thus have
vy’

The fluid momentum variation for the annular volume (AS,A8’) is thus equal to zero. The
axial resultant of all the exterior forces applied to this volume is therefore equal to zero, so
that we will have

P'AS —pAS —AQ=(p' —p)AS —-AQ=0

or :

(11) o AQ
‘ P -P=33

This last relation will be considered as being the definition of the surface S’ when the surface
8 will be known.

We can now see that the pressure distribution along a stream line crossing the space swept
by the screw blades will have the general course represented on the right-hand side of figure 2.

Finally the following fact must be noted. If the theorem of moments of momentum
were applied to the slip stream portion included between the sections S, and S, it would appear
that the fluid contained in this portion has no rotation. The rotation of this portion of the
slip stream can thus be due only to viscosity and to the periodicity of the pressure distribu-
tion in the section S. It is also for these last reasons that there can be a variation of the
moment of momentum of the fluid between the sections S’ and S8”.

We will say BY DEFINITION that a blade screw is working under NORMAL CONDITIONS when
the relations (8) and (9) can be considered as sufficient approzimations of the thrust and the torque.

This definition is justified by the fact that in the most important practical applications
of the blade screw the normal conditions are realized.

We will call neighborhood conditions all the circumstances which can remove us from the
normal conditions. '

In some blade-screw applications, the neighborhood conditions have a primordial influence.
These special cases of blade-screw applications will be submitted to a separate investigation.

Substituting in the relations (9a) and (9b) the above values of AM and AI” we get:

(12) ' AQ=AS(V+v)v”"s.
. - — ” (V+v)’
(13) AC=ASrw yor §

These expressions will give us the values of the partial thrust AQ and the partial torque AC
produced by the considered blade elemgnts only when the slip and race velocities », »”, and »”
will be determined.

Let us agree to call specific function the quantity

a4 P=RA0T 18 ra" (V+0)

which represents the ratio of the work VAQ of the partial thrust to the work QAC of the
partial torque. It is easy to see that this ratio is nothing other than the partial ¢fficiency of
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a blade element of the blade screw considered when the last is propulsive. But I have con-
sidered it necessary to adopt for this ratio a more general name, because we will have to consider
it far out of the limits, where it has the meaning of the efficiency of a propulsive screw. We
shall see in the following that this ratio specifies by its numerical value the type of machine
which the blade screw realizes.

Let us now pass to the direct evaluation of the fluid pressure on the elements of the blades
of the screw.

F16. 3.

Figure 3 gives a general picture of one of the blade elements considered. The relative
velocity W of the fluid in regard to the blade element is the resultant of the velocities V+v
and r (2—w). The line 00’ is the zéro line,' to which is referred the angle of attack i; ¢ is
the angle between the zero line and the plane of rotation of the blade screw; it is by this angle,
called effective blade angle, that we fix the inclination of the blade elements on the screw ro-
tation plane.

The relation between the effective blade angle ¢ and the’ pltch H of a blade section is to
be directly seen from figure 4. We have

(15) © Hm2zrtge

It is easy to see that the numerical value of the pitch depends upon the reference line adopted
to fix the inclination of the blade element considered.

The pitch H counted from the zero line will be called effective pitch, in opposition to the
constructive pitch measured from any other
reference line—the chord of the blade section
profile, for example—whose consideration can
be more convenient in some cases, as for
the workshop drawings of blade screws.

As far as I knowit, innearly all the blade-
screw investigations it was the constructive
pitch, measured from the blade section chord,
that was always considered; but, as follows
in full evidence from what is said in Note III at the end of this memoir, the constructive pitch
is no other than a quantity arbitrarily chosen. Therefore we can not adopt this quantity to
describe the blade-screw properties. The blade properties depending upon pitch can only be
referred to the effective pitch, which is a perfectly defined hydrodynamical characteristic, fully

4 Errs,
Flo. 4.

1 For the definition of the zero line and in general all concerning the laws of fluid resistance, see Note III at the end of this memorandum.
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independent of the screw blade section profile. To equal constructive pitches can correspond
very easily unequal effective pitches, and vice versa. Under such conditions it is easy to con-
ceive all the difficulties which the consideration of the constructive pitch can bring into the
analysis of the screw-blade problem. Thus, when using the constructive pitch, we can often
find negative values for the slip, while the effective pitch will always give positive values of the
last, as must be from the physical meaning of the slip. We therefore see how important is
the consideration of the effective pitch.! _

All the quantities which are necessary in order to specify the value of the fluid resistance
AR of a blade element are represented on figure 5. It is by the angle 8 that we will fix the
inclination of the resistance AR to the normal to the zero line. As is well known, we have

(16) AR =kHAAW?

PaVad

PO - —
rf2-a) rnR

where k; is an empirical function of the angle of attack depending upon the blade section profile
considered; & the fluid mass density; AA the area of a blade element, equal in a sufficient approxi-
mation to

an AA =bAr

b being the breadth of the blade element considered.
The velocity W is equal to '

(18) W= (V+20)? +r(Q—w)?

and we also have

(19) .Wsin (p—t)=V+v; Wecos (p—i)=r(Q—a)
20) tglp—i) = -2

For small angles of attack the formula (16) reduces to
1) AR =k3AA W2
In Note III will be found all the restrictions in the use of the formule (16) and (21).

1 For example, the effective pitch gives at once the right understanding of the working conditions of a boomerang. A regular boomerang,
whase two asymmetrical blades are not twisted, but have aerofoil sections, will have an effective piteh of a certain value for rotations in both senses
in the plane of its blades, and thus when thrown with an initial rotation will produce a thrust to which all interesting boomerang proverties are due,
A boomerang is, exactly speaking, nothing more than a propeller left free to move in space, )



26 ANNUAL REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

If the screw considered has n blades, we will have included in the annular space considered
n blade elements, giving each a resistance AR. Projecting these forces AR on. the screw axis and
on its rotation plane, we will find the values of the partial thrust AQ and partial torque AC
produced by the elements considered:

(22) AQ=nAR cos (¢+8z)
23) . AC=nrAR sin (p +85)

These last formule assume that the values adopted for the empirical functions %; and 8x
take account of the possible mutual interference of blades of the screw. In the following we
will return, more in detail, to this last question.

Comparing the relations (22) and (23) we find

(24) . ' AC=AQr tg (¢+Br)

and for the specific function we get the value

vAQ V1

(25) P=QACT T8 tg (o +Pa)

It must be noted that the last expression of the specific function is fully independent of any
hypothesis.

The expressions (12) and (13) of the partial thrust AQ and the partial torque AC, found
in the foregoing by the general consideration of the fluid motion around the blade screw, must
evidently be equal to the expressions (22) and (23) of these same quantities found by the direct
evaluation of the fluid pressure on the blades of the screw. We thus have:

AQ=AS(V +2v)v"8=nAR cos (¢ +Ba) =nk; 5AA W* cos (¢ +Bx)

: _ ) ,,(V‘*"D)’ _ : —_ 2 a1
AC=ASrw Vo §=nrAR sin (¢ +8g) =nrk,AA W2 sin (¢ +85n)
with
AS =2xrAr; AA=0bAr

Introducing these last values in the above formule we get:
nb
(26) v (V+v) =%7c‘ W? cos(p +Ba)

" (V+v)z___-_7ﬁb_k‘ W2 sin (o +Bu)

@n e "ty

In these last relations appears the expression

nb
2mr
which is the ratio of the total breadth of the blade sections considered to the circumference by

them described. We will designate this ratio by a and give it the name breadth ratio. Thus
we will state

. ‘ b
(28) e=5-
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Introducing the notation (28) m the formule (26) and (27), and taking account of the
relation (19), we finally get

v" _ ak; cos (¢ +B8s)
(29) Vv~ smi(e—1)

, ro” _aky sin (¢ +Br)
(30) ' Voo smile—3)

These last two relations constitute the first two equations of the general blade-screw theory.
Let us now calculate the work of the fluid resistance of the blade elements considered in
their motion relative to the flow meeting them. We have

nAR W cos (AR, W)=nAR sin (¢ +Ba) T (@ —w) —nAR cos (o +Br)-(V+v)
. and on account of the relations (22) and (23) we get
(31) 1AR cos (AR, W) =A0(@—w) —AQ (V +v) =0AC— VAQ — wA0—vAQ.

In the last member of this relation, RAC is the work of the partial torque; VAQ the work
of the partial thrust; @AC the work commmunicated to the fluid in its rotational motion; vAQ
the work communicated to the fluid in its translatory motion. Accordingly, the quantity
nAR cos (AR, W) represents the work spent in the displacement in the fluid of the blade elements
considered. It is evident that the same relation holds for any other blade elements. We are
thus brought to the following fundamental theorem.

TarorEM I.— The work of the fluid resistance of the blades in their motion relative to the flow
meeting them is equal to the work spent for the displacement of the blades in the fluid, that is, equal
to the work spent in shocks, friction, etc., of the fluid flow against the blades.

This last fact established, we are now able to apply the kinetic energy theorem to the
annular space containing the blade elements considered. We thus have .

(32) Q0 C= VAQ + 1A Mv”* + YAI"0" + (@A 0~ VAQ —wAC—vAQ)
from which follows directly ‘ '
(33a) VAQ +wAC= 14A My"3 + LBAI"w "2,

This last relation is in reality evident of itself, because it expresses the fact that the work
communicated by the screw to the fluid is equal to the kinetic energy of the fluid in the section
S*. But it was my intention to show, so to speak, the whole genesis of the last relation, on
account of the distribution of energy absorbed by the screw working. It must also be noted
that the relation (33a) is a direct consequence of our definition of the normal working condi-
tions of a blade screw, according to which the losses between the sections S,, 8§ and §’, §” are
considered as negligible. The relation (33a) can also be written in the following form: sub-
stituting in (33a) for the partial thrust AQ and the partial torque AC their values given by the
relations (9), we get
(33b) v (Qu—v")=7r" 2" (0" —2w).

We shall now show that on account of the normal screw working conditions not only the
relations (33a) occur, but also that we have, separately, besides

(34a) vAQ = 14A Mv”?
and
(34b) wAC=YAI"w" 2,
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In effect, let us apply the Bernouilli theorem between the sections S, and 8. Neglecting
the interior losses between these sections and neglecting also the radial velocities in section
S, we have (%)

Po+m"‘p+§g‘%—'v_)z

or
(358) | Po—P= 3@ Vo +v7).
Let us apply once more, to the same approxnnatlon the Bernoullll theorem. between the sec-
tions 8’ and 8”; we have :

p’+§ (V+o)t=p" + %(V+'v”)2.
But as we admit the pressure p” to have already reached the value p, in the section S”, we w11|
have
(35b) P~ po=3@ V" Fom—2 V-,

Adding term by term the relations (35a) and (35b), we get
p'—p=§(2 V4+o")w"

On the other hand, on account of the relqﬁons (11) and (12), we have

P - ——Q=6(V+v)v .
From the direct comparison‘of these last two relations we get

—g CV+o"Ww"=(V+ow”

or
v =2

which, on account of the relation (33b), has as a direct consequence
| " =2w.

But according to the relation (9a) we have AQ=AMv”.

1 When the radial velocities are neglected, the motion of the fiuid in the slip stream, in cyundrlcal coordinates, is expressed between the
sections S,, S and §’, $” by the following system of equations:

(V1) V+v) _%p.
2z

ot %,3: WV )5("")

(V+v) ===
v and rw being here the slip and race velocities at any point of the slip stream at a distance r from screw axis, p the pressure at the point con-
sidered, z the cylindrical coordinate parallel to the screw axis, the last being an axis of symmetry for the whole phenomenon. .

The third of these equations means that the radial components of the vortices in the slip stream can be considered as negligible. The
second of these equations justifies the calculation of the pressure distribution in a cross section of the slip stream indicated in Note II. The
first of these equations, integrated along a stream line, gives

2
ﬂl’;v—) + p=const

We thus see that when the radial velocities are neglected the race velosity comes out to be negligible in the calculation of the pressure dis-
tribution along a stream line of the slip stream.
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We thus will have
vAQ =A Mv"v=3A Mv"?

The relation (34a) is thus justified. On account of the relation (33a) the relation (34b) follows
directly. '

~ The two relations

(36) p"=29; 0" =2w

constitute the other two equations of our blade-screw theory.*

These last relations show us that the slip and race velocities in the section 8°, that is, in the
outdraught, are ezactly the double of the corresponding slip and race velocities in the section S, that
is, in the indraught. The exact position of the section S to which has to be referred the velocity W,
used for the calculation of the fluid resistance of the blades, is thus fized exactly.?

‘As far as I-know, the relations (36) are in full agreement with all the experiments made up
to the present day on the velocity distribution in the slip stream.

Thus N. Joukowski, in his analytical interpretation of Flamm experiments, comes to the
same results.®

G. Eiffel has observed the slip velocities in the indraught and outdraught of a propeller for
values of Vincluded in the interval of 10 m./sec. to 25 m./sec.; and his experiments verify with
an accuracy of 1 or 2 per cent the relations (36).%

The relations (36) thus appear as a fundamental characteristic of the flow in the slip stream,

Substituting in the equations (29) and (30) the values found for »” and w” we get:

2v  aky cos. (¢+PBu)

37) Vo sne—3)
2rw . aky sin (p+Ba)
(38) VT sm (=)

The expression of the specific function takes the form
V o(V+20) V1

(39) P=90 10 (V + ) =;§.tg (0 +8g)
The-equations (37), (38), and (39) with the relations
(36) v =20; 0" =20

constitute the system of fundamental equations of the general blade-screw theory, which em-
braces all the blade-screw properties.®
All the following chapters of this memoir will be devoted to deducing the blade-screw prop-
erties by the analysis of this system of equations. It isin the consequences obtained that there
will be found the best confirmation of the system of equations established. -
Before passing to this analysis, I will establish the explicit expressions of the principal
quantitites which are used to characterize the work of the blade-screw elements considered.

1 The establishment of the relations (38) for the middle part of the slip streamn where the r’s are small, needs only the hypothesis that the losses
between the sections So, S, and §’, §” are negligible.

s Effectively: The position of the section S” 1s exactly kuown, as it is the narrowest section of the slip stream; the section S is the one disposed
in the indraught where the slip and race velocities are exactly the halves of the slip and race velocities mn the section S§". The posioion of the sec-
tion 8’ is fixed by the relation (11).

3 N. Joukowski, ““ Vortex Theory of the Propulsive Screw,” relations (20) and (21) on pp. 11 and 12. Moscow, 1012 (in Russian).

4+ G. Eiffel, “ Nouvelles recherches sur la resistance de V’air et ’'aviation faites au lahoratoire &’ Auteuil,” Paris, 1914. See the table on p. 379.

s A critical discussion of this system of equations will be found in Note VI at the end of this memoir.
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We will designate by N the number of turns of the blade screw; per second, and call relative
pitch the quantity

o |4
(40)‘ z‘-TH

which expresses the ratio of the pitch of the trajectory of the blade element considered to its
own pitch.

Let us besides designate by p and call advance per turn, or, shorter, the ad'vance, the ratio
V/ N. ,

We have . .
(41) | ; 27V
As H=2rr tg ¢ we also have i
; ' Vv v Vtgqo rtg o
42) | rGT N~ NH - H *8¢
The specific function takes the form
(#3) P =gl +Ba)

and we have

v
(44) ptgle +Br)=ztgo=rg
Let us introduce the notation

(45) . . ] a k‘ cos (¢ + BE)

2 sin3 (¢ —1) =az
The equations (37) and (38) reduce then to
6 . N L
47) v V——az tg (¢ +8r)
From these last equatlons we find directly the values of the slip and race velocltles v a.nd rw:
: ) Vaz az
(48) V=1—az_ "UT= g2 18¢
' 1 1
(49) PRLIES 1) AR R LI L PR

Introducing these last values in the expression (20) of tg (¢ —1) we find:

tg (p—i) =P 12 1
| r@=a)” (1- az)[z 2o “21(1::2) tg (¢+Bn)]
from which relation we get the value of the relative pitch .
(50) (1—az)tg (p—1)

tg¢ [1+az(+az)tg (p+Ba) tg (p—1)]
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Introducing this last value of the relative pitch in the expression (43) of the specific function, we
find: ' .
51) _ (1—a2)tg (p—1) .

P=tg p+Pa) [l +az (1 +a2)tg(eo+ha) tg (p—1)]

We thus see that the relative pitch ¢ and the specific function p of @ blade.element are functions
of the angle of attack i only. We can therefore consider the specific function as being a function
of the relative pitch only. We are thus brought to the following theorem:

Turorem IL-—The specific. function p of o blade element is a function of the relative pitch of
the same blade element only. ' - '

Substituting in the expression (12) of the partial thrust, the value (48) of v we get:

2V3az
(52) AQ=2ASQ)(V+’U)8=-(1—:E—Z'7,A85
and introducing the notation :
2az
(53) A—azp ¢
we got
(54) AQ=g3A8V?

which expression of the partial thrust is similar to the expression of the fluid resistance
AR=ksAAW?

We will call load coefficient the coeficient ¢ defined by the relation (53).
Introducing the value found for the partial thrust A Q in the expression (22), we find for
AR the value 0 g7
T _ -A __qdA
65) AR =508 (¢ FBa) " cos (p+Ba)

And for the partial torque A € we find the value:
(56) . AC=AQrtg(p+Pa)=rgdAS Vig (¢ +PBr)

The work developed in a unit of time and the power absorbed by the blade elements consid-
ered are equal to

(87) : VAQ=qsA8V?
' _q3A8 V*tg (¢ +6x)
(58) QA C Tte P

Between the slip s and the relative pitch z exists the relation

(59) =g_‘:£7 =1 v 1
=T “NE=' "

from which follows ‘

(60) z=1-—8

Lot us finally agree always to consider the indraught and the outdraught relative to the
slip stream which the blade-screw rotation tends to produce.



Caaprer II.
THE STUDY OF THE SPECIFIC FUNCTION.

We will make the present discussion in the following way: On one hand we will direct
our attention to the blade elements; on the other, we will follow the general picture of the
phenomenon by aid of our system of fundamental equations. For the general view of the
different states of work of the blade-screw, which wehave in mind here, it will be more convenient
to fix the orientation of the fluid resistance AR relative to the blade element by aid of the angle

|
|
2
|

F1a. 6.

B’ between AR and the zero line. The senses adopted as positive for the angles 8’ and ¢ are

indicated on figure 6. Substituting for Sz in the formule (45), (50), (43), (48), (49), (52)
and (56) its value

Ba=p—B'
we get ' @ )
akysin (B’ — ¢ v
(61) I2= g am i—p)  V+v
62) _ l—az - _V
: ~tg elaz(1 + az)ctg (8’ — ¢) —ctg(t—9)] NH
ztg e VAQ
(63) : P=ctgB =) QAC
. az
(64) . v=Vm=rﬂ1_azz tgtp
(65) ro= —g)=raztg e ZE B o1 (5,
2az
(66) AQ QAS'U( V+ov)e= - a,z)zsAS V2=gsaSV?
. (67) AO’—AQ rctg(8’ — o) =rgdAS V? ctg (B’ —

In these formulm figure the two empmcal functions %; and B/, the general course of which
is nearly the same for all the aerofoil profiles. For variations of the angle of attack ¢ starting
32
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from zero, the empirical function B’ increases very rapidly, and even for small values of the
angle i reaches values near to 90°, which value this function maintams till th('e angle of attack
approaches 180°; for values of the angle of attack near 180° thg angle' 8’ rapidly reaches also
the value of 180°. The empirical funetion %; also increases rapidly with the angle of attack,
up to a certain value of the latter, aftér which the increase of k; becomes moderate; after the
angle of attack has reached the value of 90°, the empirical function &;

decreases, first moderately, afterwards rapidly, and approaches the “‘4 { 1YY
value zero when i approaches 180°. (See Note IIT at the end of /] /’ i \\ \\ \\
this memoir.) ‘ // /y /l!\\ \\

In the present discussion it is the general course of the whole  _ /{ { 2N 52\ -

phenomenon of the working of a blade screw that I wish to estab- ,/:’:\\\ \\{ //;’ N
lish. The quantitative side of the question will be taken up in full | T\‘_\_?_,_ .6
detail in the following chapters. This is why in this chapter, for W

Ll o

the simplicity of the analysis and the symmetry of the results, we rﬂﬂ': ! S
will assume that the blade elements considered are simply consti- ! J_{_TI_T‘_J._\ 9"
tuted of flat plates with the blade angle ¢ equal to 45°. /; (4 ‘\\

I will begin by two general remarks. \\:’\:: /i _L\ \ \:::/,

>SN, -, - -

Remark I.—The expressions ‘9a) and (9b) of page 22 will oS \\\»\\ | ////;/
give us in magnitude and sense the values of the partial thrust \ \ W\ /7
AQ and the partial torque AC when A M and Al” are always taken as WA IRy
positive. But the relations (1) will give for A M positive values l\l' Add
only when (V+)>0 or (V+v”)>0, in dependence upon the ex- S 757
pression adopted. We must therefore, in the expressions of A Mand
AI”, change the signs before (V+v) and (V+¢”) when these last \Ll‘} 44q _,
expressions will become negative. This corresponds to a change in @ S
the sign before az in the equation (46), when (V+v) becomes nega- red. ANy S
tive, and in the equation (47) when (V+v”)=(V+2v) becomes ’f‘,‘} % (((i
negative. Thus, for (V+2)<0 and (V+2v)<0 the. second mem- —‘5(—’\—17‘\*7;'?-/.
bers of the equations (46) and (47) change their signs. It is only ~ \‘V// e
with such changes in signs that the equations (12) and (13) from \ I } ! [ ,’
page 23 hecome compatible with the equations (22) and (23) of aatlai
page 26, which always give AQ and AC' in magnitude and sense. /75 7h

Let us examine in their general outlines the phenomena’ which
accompany the change of signs of (V+v) and (V'+v”). Let us con- M A
sider a blade screw working at a fixed point, and let us communicate Frad-dd S
to the blade screw a translation along its axis of increasing velocity RS S
in the sense inverse to the sense of the thrust produced by the screw: _ 4,/ J_\\\\X _§
or let us consider a fluid current running on a blade screw working - ‘\;\‘; | 7;7’7 ~
at a fixed point, with an increasing velocity, uniform in the whole \\\\ N, / 7
current, parallel to the screw axis and directed on the screw in the \\ \\\\ P ,/»//
sense of its thrust. Since in the slip stream created by the blade \u‘, 1
screw the slip and race velocities decrease as we move away from .
the blade screv, starting from the sections § and 8”, there musi be 7. Z.

formed, as soon as a fluid stream is directed on the blade screw in the sense above indicated, two
surfaces of separation through which there must be no flow and between which the screw will be
included. This state of things is schematically represented on figure 7a. When the velocity
of the fluid stream directed on the blade screw is increased, the two surfaces of separation will

approach one another, and there will be a moment when one of these surfaces of separation
132025—19—3
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(it will be the one disposed in the indraught) will cross the space swept by the blades of the
screw. This moment will correspond to the change of the sense of the fluid stream crossing
the space swept by the blades of the screw. At this moment the sections S and 8’ of the slip
stream will be interchanged. The crossing of the space swept by the screw blades by the
surface of flow separation is characterized by the conditions

(V4v)=0and i=¢

which bring with them @ z= oo and therefore z=o0 for V>¢0. We thus see that we must have
N=oo; that is, the blade screw will show a tendency to take an infinite rotation. The thrust
and the torque of the blade screw have the tendency to disappear. In the case of a ship pro-
peller, in the state of brake work of the propeller, the whirling phenomenon is often observed
and corresponds to the conditions just described. When this critical point of work is passed,
a new state of work establishes itself, for which the two surfaces of flow separation are disposed
on the same side of the blade screw. We have (V+v)<o but (V+v")>0. Between the two
surfaces of flow separation there will appear a vortex ring, stationary relative to the blade
screw, whose axis coincides with the axis of the screw, as schematically represented in figure 7b.
I have named this last state of work of the blade screw the wvorter ring state of work. This
state of work is included in the interval (V+2)=0 and (V+9”)=0. We will designate by
o+ the value of the angle of attach which corresponds to this last condition. At the
moment (V+v") =0, the fusion of the two surfaces of flow separation takes place (see fig. 7c)
which is immediately followed by their disappearing as soon as (V+v”) has changed its sign,
which corresponds to the change of sense of the whole stream crossing the screw. From this
moment on, the slip stream created by the blade screw is, so to speak, vanquished by the out-
side stream directed on the screw. The ensemble of the phenomena is just that Whlch
accompanies the change of sense of the stream crossing the blade screw.

For the vortex ring state of work, and for the states of work near to the last, the radial

velocities, near the space swept by the screw blades, have sensible values. Under such con-
ditions our system of equations (61)-(67) can give only an approximate characteristic of these
states of work, for the detailed study of which the radial velocities have to be taken into account.
[ will limit myself here to the establishment of the existence of the vortex ring state of work
and will not go into its detailed study.!
' Remark II.—The complete cycle of states of work of the blade screw includes the states.
of direct rotation, that is rotation in one sense, and of reversed rotation, that is rotation in the
inverse sense. The states of work of direct rotation are separated from the states of work of
reversed rotation by the standing states. When the blade screw is stopped in a fluid current,
the angles of attack of the blade elements have for values

i=i'=—(F-v)orimie=F+e |

We thus see that the states of work with rotation in one sense are included in an interval of
variation of the angle of attack ¢ equal to =. On the other hand, it is éasy to see that the
states of work of rotation in one sense can only be the reproduction of the states of work of
rotation in the other sense, when the screw blades are of identical configuration on both sides.
Under such conditions all the quantities characterizing the blade screw working must be
periodical functions with a period equal to ». This remark will allow us in the present case,
i. e., of blade elements constituted by flat plates, to judge of the values of the function con-
sidered in an interval of variation of 7 equal to 2r, when this function shall have been studied
in an interval of variation of i equal to .

1 The author has been deprived of the possibility of reproducing experimentally this interesting vortex ring state of work. All the foregoing
description of the phenomenon has been obtained by its purely analytical discussion.
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As for the standing states above mentioned, it must be noted that, the screw having no
rotation, the phenomenon of the slip stream disappears, and it is to be expected that our system
of equations will give only an approximate characteristic of these standing states. But when
the standing states establish themselves we have simply to do with an immobile screw plunged
in a fluid current directed along its axis, and, accordingly, this standing state can be very easily
submitted to a direct experimental study, since we have only to measure the drag of the blade
serew and the torque necessary to prevent its rotation.

Having established the existence of the vortex ring state of work and the periodicity of
the function describing the blade-screw work, we shall study first from a purely analytical
standpoint the general character of variation of the principal functions occurring in the blade-
screw theory. "

Let us first examine the general course of the functions az and ctg (8’ —¢) which figure in
all the formulee (62)-(67), and which depend upon the empirical functions %; and B’.

We have L6 @ )

akysin (B'—o v
(68) = gen G—) Vv

For 1=, az= + = ; the function az has an asymptote parallel to the axis of ordinates and
we have (V+v)=0. The function az is equal to zero for 8’ =¢ which corresponds to a very
small angle of attack i=e. For values of the angle of attack included between ¢ =12 the
funetion az takes positive values. For (V+v")=0, we have az=—1, the angle of attack
having the value i=—[r—(¢+¥)]. In the interval — [ — (¢ +¥)]<i=¢, the function az takes
negative values. The general course of the function az is represented in figure 8, where the
sign of az has been changed in the interval i< — (xr —¢) and 4> (¢ +¥). The function az appears
then as a periodical function with a period equal to =, in complete agreement with the fore-
going remarks, and under such conditions the system of equations (62)-(67) can be considered
“n the whole interval of variation of i between 0° and +180°, with the exception of the interval
corresponding to the vortex ring state of work. For this last state of work the portion of the
curve of az is plotted in dots, in agreement with the change of sign in the equations (46) and
(47) indicated above. In this same figure 8 is represented the general course of the function
ctg(8’ —¢), which directly follows from the general course of the empirical function 8.

After having established the general character of variation of the functions ez and
ctg(8’ —¢), it will be easy to follow the general course of the functions:

, v az

(69) , e

‘ az(1
(70) * "T‘}’=az1(__ja:_2)°tg<ﬁ'-¢)
@) a: “tg plaz(1 4 az)ctg (B’ — ) —ctg(r—o) =NHO
- oo l-e . 3e

. (72) P=ctg(B — o)laz(l +azictg(B’ — o) —ctgli—e)] ctg(’ o)

(73) v _ az

. : - 4 ztg ¢ 1 -az
(74) @ _ az(l +az) -
letgso I —az ctg (8" —¢)
(53) 2az

1= 1 —az)?



ANNUAL REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

36

e

A

750"

2209

NEHEVNIN y o g
o w /a/ » \7/
N AN N % By N ¢
I.....al.u.“ﬂ\\ FX ~=1i Q !,...V. 3 meng I!-ﬂv-:lil.. -
: .. JR I B ||||V—” I..llw.W
S T o e e e
A NS DY B\ N\ =
MAE 1K R
8 _I=¥% { .1 . i J O P
S S e 10k \ﬂw{uﬂ O NS B ) B TR
R :
AR s
| S |
L)
N . ]
L\
31 3 3
N 5
o K& | \ Q IHEELEY
) RN [
— JE g —ene N ) |.wm—l Ji IR EP I . — e - % IRENNDE MSGRNS BN AN
- J...lll,..l'.lllll [ TESVPRE WSS FUlpyl Sy HLAI] — — . —]

A




37

THE GENERAL THEORY OF BLADE SCREWS.

. Jlﬂ ~ Q] e .,..., =
o~ ] ‘ s ] N
R 3 S
£y < o
//m PUSNEPONE SN I — e r\ll. —_+em —  f— — — ] — - ] N
Q .,.. ] N
.,M v\\.x == \U@ﬁ i ,
\\ ot : -
S - 3 3
) N
NRRA RS AN
ki VRS L3/ off
e e H =y
& — —+—1—] e e o e s i I 8. bl
R Si—1— —— - sl
[S e /. R v&v. M )
._"/ 4 _ | AR _
i , Q, N \
s 3 a__rlh,..ﬂkﬂblii_. !ue\ql.lim Mo N L DL_L LY o X <
N | (9 \ a.o )
| . 1A ) )
f T | % L ST & ,o__
| i, T > ) |
e S TS e _
= % ] Lo
__ SIS T [=I3%
Q. : > o
I YT =X 7 ol ;
= 3 4 bl & x\ |
f 18
| A\ 14 Q N
___T R 5 L S A e Rl e o e I\ I —=4-1—1 . \
| D o e e e e et s F i e e o e s i |
f o} e Etet Sttt et o et e 3 St |
| e N A B 7% S "
| AV DA I _
__Il N . | | N R \L.l__




38 ANNUAL REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

By aid of these functions we can in all the cases appreciate the values of the slip and race
velocities and follow the variation of the specific function and the partial thrust. In all the
following diagrams the parts of the curve corresponding to the vortex ring state of work arc
represented by dots. '

In figure 9 are represented the functions v/V and re/ V. These functions have an asymp-
tote in common for az=1, that is, V=0; the function rw/V has also an asymptote parallel to
the axis of ordinates for az= oo that is (V+v)=0. Both functions are equal to zero for
az=0. The function rw/V is equal to zero once more for az=—1; that is (V+9”)=0. A
maximum and minimum of the function rw/V are fixed by the condition

d [az 1+az) | _
daz) 1-0z ]‘0

taking into account that ctg (8’ — ¢)==1 for angles of attack having values not too close to 0°
or +180°. From the foregoing equation we find

: o\ _(1EV2)@EVD e .5
- (-1.7 o = =z N for az=1++2

In Fig. 12 are represented the functions x and p. . Fori=o, the relative pitch z being smaller
than unity has valuesnear unity. Therelative pitchzis equal to zero for ¢z =1 and az= and goes
through a maximum between the values of az which correspond to values of the angle of attack
included between i =i, and i=¢. As by definition z= V/NH, the relative pitch can take the
value zero only for V=0 or N= . But to the value i=¢ corresponds the beginning of the
vortex ring state of work with N=cc ; as a consequence, to the value =1, will correspond V=0,
that is, the state of work at a fixed point. The relative pitch z=, that is, admits an asymptote
parallel to the axis of ordinates, for : »

az(l +az) ctg (B’ —¢)=ctg G—¢)

This last relation gives two values for the angle of attack ¢, one positive, the other negative,
which are approximate values of the angles of attack corresponding to the standing states,
while for z= o we have N=0 on account of the relation z=V/NH. Itis easy to see that the
angles of attack of the standing states have for exact values

tq = —(g—«p); ia=g+¢ :

In the interval i’y <i<i, the relative pitch takes positive values. In the interval 1,<1< 1,
the relative pitch takes negative values. For angles of attack whose difference from the pre-
ceding values are equal to 180° the relative pitch takes the same values. For values of i for.
which ctg (8’ —¢)=<1. we have p=zx, while we admit ¢=45°. The specific function p=o0,
that is, admits an asymptote parallel to the axis of ordinates for ctg (8’ —¢) =0, which corre-
sponds to 1= —e. In the interval i’, <i< —e the specific function p has a minimum greater
than unity, and has a maximum less than unity in the interval —e<t<3,.

In figure 10 are represented the functions «/Q and v/rQ.. It is easy to see that for small
values of az we have w/Qz2v/rQ. These functions have the same asymptotes, parallel to the '
axis of ordinates, as the relative pitch z, and are equal to zero for az=0, that is, i=¢. When
i tends toward its value i=¢ the function w/@ tends toward unity, and the function »/rQ
tends toward zero. The function w/Q is equal to zero for az= —1.

In fig. 11 is represented the general course of the function ¢. This function is equal to
zero for az=0 that is, ¢ =e and for az=0,thatis,i=¢. This function has an asymptote parallel
to the axis of ordinates for az=1, that is, =1, This function takes positive .values in the
interval e <i< ¢ and negative values in the interval e>i> — (r—¢).




THE GENERAL THEORY OF BLADE SCREWS. ' 39

After these preliminary considerations we can pass to our general discussion.

On figure A the specific function p is represented as a function of the relative pitch z. On
figure B is represented the complete system of states of work of the blade screw, whose con-
tinuous sequence we shall establish by the study of the specific function.!

We shall start our discussion from the moment when the screw rotates at a fixed point
with the angular velocity & (see fig. B, 1). We have V=0. Under such conditions the blade
screw -can fulfill the: functions of a fan, or-a helicoidal pump, or be a lifting screw (belicopter
screw). The relative pitch z and the specific function p are both equal to zero. The function
az, as directly follows from relation (61), is equal to unity.

ak; sin (8’ —o)
This last relation fixes the value of the angles of attack of the blade elements considered, for
the work of the screw at a fixed point. We will designate by 1, the angle of attack defined by
the relation (76), as has already been mentioned in the foregoing. It is easy to see that this
last value of the angle of attack is independent of the angular velocity @ of the screw rotation.
The slip velocity in the indraught being equal to

az az-r{

@ v=r ;% 8 ¢~ az(1 +a2) ctg (B —¢)—ctg G—o)

1
substituting az=1 we get )
(78) 7 .

Ye=7 cig @ —¢)—ctg (to—o)

When the values of i, and v, are known, the relations (66) and-(67) give the value of the
partial thrust AQ and partial torque AC of a blade screw working at a fixed point.

We will designate by fan velocity the slip velocity in the section S”, that is v” =2v. It1is
to be noted that this fan velecity is in direct connection with the thrust. If the blade screw
produces a thrust, there must necessarily be a fan velocity; and, inversely, when there is a fan
velocity, there must be a thrust. Such a state of things is a direct consequence of the momen-
tum theorem.

We will estimate the blowing effect of a blade screw by the quantity

_LaMy _ 140Q20 v
(79) Pe=""GAC = VAQ@ PV
(80) , : pe =Pl ez tg (B'~0) __

T —an=az(1 +az)ctg (B’ —¢) — otgli— P

which we will call fan efficiency. In certain cases, when the blade screw is propulsive, for exam-
ple, the fan efficiency represents in reality the fan losses, which we will in such cases designate
by p,. Weshall take up this last question more in detail in the following. When a blade screw
is working at a fixed point, the fan efficiency gives a valuation of the whole useful work pro-
duced by the serew, which exclusively consists in ventilation, or more generally in transfer of
e fluid. In such cases we will designate the fan efficiency by p,. Substituting in the relation
(79) az= 1, which corresponds to V=0, we get

' tg (B’ — o) v
(81) C pem e e =g (B~ )
o 7
9 otg(B — o) —ctglio—9) 127
| For a better view of the general courss of the specific function, some parts of it have been plotted on o larger scale in fig. B. Intig.13isgiven
a exact drawing of the specific functionin agreement with the foregoing diagrams. It must be noted that the extension of the different parts of
he specific function curve depends upon the type of biade screw considered. .
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The state of work of the blade screw at a fixed point is schematically represented in figure
B, 1. On the curve of the specific function (see fig. A) the origin (z=0, p=0) is the represent-
ative point of the work at a fixed point. In this same figure A, 1 have represented the curve
of the fan efficiency p, as a function of the relative pitch.

Let us now allow the blade screw to take a translatory motion in the sense of its thrust.
The blade screw will become an helicoidal propeller. The specific function will represent its effi-
ciency. As the velocity V goes on increasing, the relative pitch, starting from zero value, will
take positive values. The angle of attack i will go on decreasing; the function az will remain
positive, but less than unity. As long as the angle of attack remains in the interval for which
g’ has values near to 7/2, the efficiency p will be nearly equal to the relative pitch 2. as directly
follows from relation (63). But. when we reach the interval of values of the angles of attack
1 for which 8’ decreases rapidly. the specific function p, after having reached a maximum always
less than unity, will rapidly decrease. This maximum of the specific function corresponds to
the maximum of the propeller efficiency. The propulsive state.of work of the blade screw will
end when the specific function retakes the zero value, by the fact that the partial thrust AQ
becomes equal to zero. At this moment g’ = ¢ and the angle of attack has the very small positive
value . The function az is equal to zero. The relative pitch » has a value very near unity
but a trifle less. In effect, from the relation (62) we directly find:

1—az

ak;sin (8’'—¢ cos (B'— o) .
[—Q_Sil?z';‘:;) (14 az) \Sﬂﬁ'l—(ﬁ' ) - th (i— @) :ltg @

and substituting 8’ =¢: az=0:1=¢ we get:
1

(82) r= = ——— 2t (p—¢)

» B — T

[2 sin? (e— o) otg (e~ o) ]tg ¢ tge

It is thus seen that the propulsive state of work of the blade screw is included in the interval
(83) . 0<z<1
tn which ,
(84) 0<az<1; e<t <t
(85) 0<p<1

The propulsive state of work of the blade screw is schematically represented in figure B, 2.
It is easy to recognize on figure A that part of the specific function which corresponds to the
efficiency of the propulsive screw. If the point z= 1 on the axis of abscissae is adopted as origin,
and the inverse sense of this axis taken as positive, the specific function will then represent the
well-known curve of the propeller efficiency as a function of the slip s=1—ux. '

When the angle of attack decreases, starting from the value 7 =¢, the relative pitch z will
remain positive and will go on increasing; and from the propulsive state of work of the screw we
will fall into a very short intermediate state of brake work, which will bring us asymptotically to
the turbo-motor state of work of the blade screw. This intermediate state of brake work cor-
responds to very small variations of the angle of attack from 1=¢ to 1= — ¢ (considering ¢ =45°),
the angle 8’ varving from B'=¢ to B'= —¢ (see fig. B, 2 and 3). The value z=1 (for i=0
and '8’=0 is thus included in this intermediate state (see fig. A). For f'=—¢ we have
ctg (B’ —¢)=0, AC=0. p= £ =. The branch of the specific function corresponding to the
intermediate hrake state has an asymptote parallel to the axis of ordinates. The value of the
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relative pitch, abscissa of this asymptote, although greater than unity. is, however. near to
unity, and its value is obtained by setting i=e in the relation (62).

At the right-hand side of the asymptote just described is disposed the branch of the speeific
function which from positive infinity quickly reaches a minimum greater than unity—as directly
follows from the equation (63)-—and takes afterwards values increasing up to infinity, by a
parabolic branch nearly rectilinear and bisecting the angles of the positive axes of coordinates,
while for 8/ — /2 we have z=2p (see fig. A). This branch of the specific function corresponds
to the turbo-motor state of work of the blade-screw, schematically represented in figure B, 4.
In this interval the specific function is equal to the inverse of the efficiency py of the turbo-motor.

1
(86) pr="
The curve of the efficiency pr is represented by dots in figure A. For the study of the turbo-
motor state it i3 more conveniént to consider the efficiency pr="1/p as a function of z,=1/z.
The curve of p, will then be like the curve of the efficiency p of the propulsive screw. In the
study of the turbo-motor state of work we will use these last variables. The turbo-motor state
of work is ended by the stoppage of the blade screw (see fig. B, @’). This takes place when the
torque of the resistance applied to the turbo-motor axis becomes equal to the turbo-motor
torque. At this moment
(87 g=00;p=0;2y=0;pr=0

Wae thus see that the turbo-motor state is included in the interval:

(88) o 1<3< ®;.0<2.<1

in which

(89 ) 0>az>—1; —e>i> —(%— )
(90) 1<p< ®; 0<p<1

If we now apply to the turbo-motor axis a power and oblige it to rotate in the inverse sense.
the blade screw will be transformed into a hydraulic brake (see fig. B, IV’). To this last state
of work, included in the intervel:

(91) - ©<z<0

corresponds that part of the specific function curve which from negative infinity by a nearly
rectilinear branch, bisecting the angle of the negative axes of coordinates, is directed toward
the origin.

Let us now return to the screw working at a fixed point and oblige it to take a translutory
motion in the sense inverse to its thrust. The blade-serew will produce 2 braking action (zee
fig. B, 2. The relative pitch z and the specific function will take negative values whose ahse-
lute magnitude will at first increase: the curve of the specific function will nearly follow the
bisactrix of the angle of the negative axes of coordinates, because 8’ has values near to «/2: but.
as in this interval az is a function increasing up to infinity, p and z, after having reached »
maximum it magnitude; will retake zero values. In fact, dividing the relation (62) by oz

we get:
1 1

a7 az \

1, RN
tg ¢ L(&—Z-+ ) ctg (8’ — ) — = Ctg (z—«:)]
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which expression, for ¢ z= =, is equal to zero. But after having reached zero values p and =
retake negative values. We thus see that in this interval, the specific function describes a
loop, reaches the origin by & cusp and by a parabolic branch nearly rectilinear and bisecting
the angles of the negative axes of coordinates, goes to negative infinity (see fig. A). When the
specific function describes the loop, we find ourselves in the first brake state, characterized by
the formation of two surfaces of flow separation. (See fig. B, 2’.) The cusp corresponds to the
whirling phenomenon mentioned in the foregoing, characterized by the disappearing of the brake
action and the tendency of the blade-screw to take an infinite rotation. Afterwards the vortez
ring state establishes itself, during which takes place the change of the sense of the fluid current
crossing the blade-screw. (See fig. B, 3’.) The vortex ring state is ended by the fusion and
disappearing of the surfaces of flow separation, after which a second brake state establishes itself.
(Sec Fig. B, 4’.) If it is the screw that has a translatory motion, we have to do with a braking
action as in the case of ship propellers. If it is a fluid current that is directed on the. blade-
screw we have to do with a hydraulic brake. The second brake staie finishes by the stoppage
of the screw with @=o0: z=p=+ . (Seefig. B,a.) If we now continue to move the blade-
screw in the same sense. or direct on the screw in the inverse sense u fluid current, and allow
 the screw to take a rotation in an inverse sense, we fall once more into the turbo-motor state,
but only with a rotation in inverse sense. (See fig. B, IV.) The two stoppage states ¢’ and a
thus separate the states of work with rotation in one sense from the states of work with rotation
in the inverse sense. The states of work of reversed rotation are represented in figure B.
They constitute. as it were, a picture as reflected in a mirror of the states of work of direct
rotation, and they close the complete cycle of all the states of work which a blade-screw can
run through. In the case of the blade angle ¢=45°, the states of work of direct rotation are
quantitatively identical with the states of work of reversed rotation. In the general case the
states of work of direct rotation will be only qualitatively like the states of work of reversed
rotation. )

If we now look back to the foregoing discussion, the following picture appears: The
complete cycle of the states of work which a blade screw can run through consists of seven
states of direct rotation and seven states of reversed rotation, separated by the standing states.!
The states of reversed rotation constitute, as it were, a reflected image of states of direct rota-
tion. Figure B gives a schematical representation of the complete cycle of these states of
work. The specific function unites into a continuous whole all this system of states of work
of the blade screw. The zero and infinite values of the specific function separate the different
stutes of work one from the other. The mazima and minima of the specific function indicate the
most _favorable working conditions of the blade.screw in the corresponding states.

I shall finish this chapter by mentioning two very interesting cases of blade-screw working
which at first glance may appear rather paradoxical.

Let us consider a blade screw with a constructive pitch equal to infinity, whose blades
have their sides of different configuration. (See fig. 14.) It is evident that the rotation of
such a screw at a fixed point will produce no thrust. But it is sufficient to communicate to
such a serew o translation in one sense or in the other to get a thrust. The propulsive thrust
will appear from the moment when the velocity W has such an incidence on the zero line that
the fluid resistance AR will be disposed on the same side of the screw rotation plane as W.
With the notations of figure 14 we will have a propulsive thrust as soon as the angle of attack
has a value greater than the one which corresponds to

r=X_
B '-2 a

t Exactly speaking to these 16 states of work has to be added a 17th state; it is the one with Ve 0; Q=0 disposed between the two states of
work at a fized point with direct and reversed rotation. The complete cycle of states of work of a biade screw is thus a double cycle.
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Let us consider again a screw with blades of different configuration on its sides, but with
a constructive pitch equal to zero. (See fig. 15.) It is evident that such a screw disposed in
a fluid current parallel to its axis will take no rotation. But it is sufficient to communicate
to such a screw a rotation in one sense in order for the screw to remain rotating in that sense.
The blade screw will become a turbo-motor from the moment when the angle of attack takes
such values that W and AR are both disposed on the same side of the plane of the screw rota-
tion. Those values of the angle of attack depend upon the disposition of the zero plane relative
to the blade sections considered. The working of blade screws under this last condition is
known under the name of autorotation® and has been observed by several experimenters.

s

Fi6. 14. F16. 15.

Our system of fundamental equations easily embraces these two cases of work of a blade
screw and allows their complete quantitative study. These two cases of blade screw work
are particularly fitted to show the great importance of the effective pitch. In the cases con-
sidered, the constructive pitches have values equal to zero and infinity, but the effective
pitches have finite values, and there is nothing paradoxical in these cases.

After this general review of the phenomenon of working of a blade screw. we will pass to
the special quantitative study of the different working states which can take place for a blade
screw; we shall begin with those states of work which are the most important owing to their
technical applications. '

1 See “La Technique Aeronautique,’” Tome I, No. 3, p. 108, 1010.



Cuarrer IIL
THE STUDY OF THE PROPULSIVE SCREW. -

For the study of propulsive screws or propellers it is more convenient to use the angle Sy

which we will for simplicity designate by 8 in all this chapter In the first chapter we have
established the following system of formule: :

92y - v  aktcos (o+ 8) aki cos (¢+8).
(92 TV¥v 2sin?(e—i) — 280 (p—1) ’
03) o vV (1 —az)tg(e—1)
A ‘ NH ™ tg o[l +az(1 +a2)tg(e +ﬂ)tg(<p-z)]’
(94) _VaQ ztge (1 —a2)tg(e —1)
T A0 tgle +B) tgle+P[I +az(d +az)tg(<p+ﬂ)tg(«p—z)]
(©5) v=Vilg ~OTo g g (e +8);
1 1 ‘
(96) =LA 1794 4 ) mrp 8L T ) ey gy,
(97) AQ =25A8v(V +v) =qgsAS V?;
2az
(98) _ ' =T —a2)?’
(99) ~ AC=AQrtgle+8);

In the second chapter we have introduced the notion of fan efficiency

(100) LAaMv"? az aztg (¢—1)
Pe="QA0 TPI=az” tg (p+P) [1 +az (1 +a2) tg (¢ +B) tg (¢ —1)]

Introducing this quantity in the formule (95) and (96) we get
(101) v=rip, tg (¢ +8)

(102) ' rw = (1 4+ a2)rQp, tg* (¢ +8)
46 '
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For the case of a propeller the fan efficiency e, represents the fan 'losses py. We thus have
(103) Po="y
For the propeller working at a fixed point we have V=0 and consequently
(104) az=1
as directly follows from relation (92). The condition (104) can also be written *

(105)  mb _2sin? (p—1io) _ 2 8ID* (p—1o)
&= kgc08 (@ +Bo) — Kiocos (¢ +Bo)

This last relation defines the angle of attack of the blade element considered for the blade
screw working at a fixed point. As this last relation does not contain the angular velocity Qo
we are brought to the following important theorem, which gives the fundamental characteristi¢
of the fixed point screw working:

TreoreM II1.— When a blade screw is working at a fized point, the angles of attack of all
the blade sections have constant values independent of the angular velocity of the screw rotation.

We are thus brought to the conclusion that for a blade screw working at a fixed point all
the quantities that are functions only of the angles of attack of the different blade sections
keep constant values, independent of the variations of the screw rotation. '

In the second chapter it was also mentioned that for the fixed point screw working the fan
efficiency gives the evaluation of the whole useful action produced by a blade screw, which
consists in blowing, or, more generally, in transfer of a fluid. Substituting in the formul®
(100), (101), and (102) az=1 and replacing p, by p, We get:

. _ tg (¢ — o) .
(106) Po= g (o TBo) L1 +2 tg (¢ — 1) 18 (# +B]’
(107) ’ Vo ="p tg (‘P+Bo)
(108) rw, = 2100 tg’ {e+8,)

We thus see that the partial efficiency p, of @ blade screw at a fized point has a constant value inde-
pendent of the angular velocity Q, and that the slip and race velocities v, and rw, are proportional to
the angular velocity Q.. The slip stream created by the blade-screw rotation at a fixed point
remains thus similar to itself independent of the anguiar velocity of the screw. The configuration
of the stream lines of the slip stream remains thus invariable relative to the screw axis; and
it is only the velocities along these stream lines which vary proportionally to the angular velocity
of the blade screw.

The values of the partial thrust and partial torque of a blade screw working at a fixed point
are given by (see the relations (97) and (99)):

(109) AQ, = 2508w, = 26A87°Q,%0,* tg* (0 -+ Bo)
(110) AC, = 25rAST Q%05 tg® (0 +Bo)
and it is easy . see that we have '

(111) _BaMv” _vaQ, % 1
Po Q?AC’,, T0,AC, 0, tg(e +8s)

t All the quantities relating to the work of a blade screw at a fixed point are marked by a sub zero.




48 ANNUAL REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

From this last relation it directly follows that for the evaluation of the useful action of a blade
screw at a fixed point, the slip velocity v, plays the same réle as the velocity V of a propulsive
screw.

The expression (97) of the partial thrust becomes indeterminate for V=0 because we have
V2 ¢=0.%. It is why, when we have to follow the work of a propulsive screw up to the fixed
point, it is more convenient to consider another form of the partial thrust which can be obtained
from the expression (97), putting in evidence in it the angular velocity @. We have:

AQ=¢oAS V2= q&ASEr’Q’

but as -
a=rtge
we have
(112) . Ve 2az tg® (¢ —1)

15~ [T ¥az (1 +a2) tg (¢ +H) &g (p=N]

and on account of the relation (100)

113 : V? o ofh

( ) QW=2£z‘tg’ (e+8)
We thus finally get
(114) _ AQ= 26ASr’Q’ tg’ (¢ +8):

This last relation goes directly over into the expression (109) for V=0 (@az=1; 1=1,).
Adopting the notation

e =D~ [T (T (g (T EIT .
we get

(116) AQ =24 3A8rQ?

(117) AQ,=2¢,3A8r30,?

with

(118) tg? (9 —1o)

o0l tg° (0 +60) = T 355 (o + By tE (p— )T

I will limit myself here to these brief general considerations concerning the work of a
blade screw at a fixed point, which we will need for the following developments of this chapter,
whose main subject is the propulsive screw. The working of a blade screw at a fixed point will
be submitted by us to a separate detailed and complete study.

We shall begin the investigation of the propeller by the consideration of its losses I
divide these losses into three kmds

I. The fan losses Do
II. The vortex losses p;.
III. The resistance losses p,.
The total losses will be the sum of the foregomg losses:

(119) P=Pe+Pt+Pr
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I call fan losses the ratio to the total power absorbed by the screw of the kinetic energy of
the translatory motion of the fluid in the slip stream communicated to it by the screw. As
has already been: mentioned, the fan losses which correspond to the blade elements situated at
a distance r from the screw axis are equal to:

;»Ava"" ) az az tg (¢—1)

(120) Po="gA0 ~PVTPT=az" tgle+B)l +az(1+a2)tgle +B)tgle—1)]

I call vortex losses the ratio to the total power absorbed by the screw of the kinetic energy
of the rotational motion of the fluid in the slip stream communicated to it by the screw. The
vortex losses which correspond to the blade elements situated at a distance r from the screw
axis are equal to ’

A0 3AC02w_w az(l +az) )
(121) = ga0c ="0a0 ~a~° 1-a BETH

I call resistance losses the ratio to the total power absorbed by the screw of the power
spent in the displacement of the blades themselves in the fluid. We shall obtain the resistance
losses which correspond to the blade elements situated at a distance r from the screw axis by
taking the difference between the total losses and the fan and vortex losses.

(122) Pr=p— (Po+De)
p'=1—p—"1 _a'.zaz_pazil_:;ZIZ)tgz(‘P"'ﬁ)
(123) | tg (o +B) — tgle—1)

Pr= P (1 az)tglp—1)

It is easy to see, as directly follows from the relations (113), (114) and (116), that all the quan-
tities characterizing the ry;gg/ working can be expressed as functions of the losses only. Let us
for example calculate the Bad coefficient ¢ as a function of the losses. From relation (113)
we get directly: '

__ D
(124) az= P

.and substituting this last value of az in the relation (98) we find:
=207 Py
(125) g=2 p 1+ - )

This last relation shows us that a propeller of high efficiency must necessarily have a small load
coefficient. For example, for p=0.8 and p,=20.08 we have p,/p=<0.1 and ¢==0.2. It has always
been experimentally noted that high efficiency propellers have values of the load coefficient
near that obtained above. ,

Let us now examine the conditions of the maximum of the partial efficiency p of a blade
element of a propeller. The maximum of the efficiency (see relation (94)) depends upon the
course of the empirical functions 8 and k;. But if we note that in the propulsive interval of the
screw we have p=z as long as =<0, that is, for angles of attack >+ (*) and that afterwards
8 is a rapidly increasing function for i <i’, it is easy to see that the maximum of p takes place
for values of 8 and i near =0 and i=i’. We will call optima angle of attack and designate by

(l)' 1 designate by i’ the angle of attack for which the fluid resistance AR is normatl to the zero plane. See Note III at the end of this memoir.
132025—19——4
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top=xi’, the angle of attack for which the partial efficiency p is a maximum. Under such con-
ditions we can consider, as a first approximation,

(1—-a2)tg(e—1")

(126) Pmu—”—tg¢[1 +az(1 +az)tgotgle—3")]
. - _a_k‘, CoS ¢
with 02= 58 (p—1")

We thus see that as a first approximation we have
) Pp=1—ppay=1—2=5

TaEOREM IV.— When a blade element.of a propulsive screw is working under conditions
near its mazimum efficiency, its slip is nearly equal to its total Zosses, and its relative pitch is nearly
equal to s efficiency.

It is now easy to understand why in propeller practwe only screws of low slip show high
efficiency.

Let us now examine how pma, varies with the blade angle ¢ and the angle of attack ¢,,. We
shall see in the following that high values of pmax are only possible forlow values of the optima
angle of attack. Under such conditions the function az will have a low value, of the order of a
small number of hundredths; that is why, for a first orientation in the actual question, we can
neglect az in the expression of pma; and thus admit .

tg (¢‘%p)
(127) Pmay =2 tg'——¢
I z
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Fie, 17. : Fra. 18.

In figure 17 have been represented curves of the partial efficiency pmar as function of the effective
blade angle ¢ for different values of the optima angle of attack 7,,. It is easy to see from this
diagram that the smaller the values of i,, the higher are the maximums of pma, and that the
maximums of pysx Occur for values of ¢ near 45°. In figure 18 are given the values of ppaz max.
as function of 4.y, and there are also represented the corresponding values of ¢. An examination
of diagram 17 brings us to the following rule Whlch must be used for the choosing of the profiles
to be adopted for screw-blade sections.

For the sections of screw blades there must be adopted profiles whose optima angles of attack
are as small as possible.
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This rule allows us to see directly the partial efficiency pmax. maz- 23 & first approximation
that can be expected from a given profile. To give a general idea of the values which the
optima angles of attack can have, in figure 19 is represented a series of 8 curves as functions of 1,
for the case of air screws, for plano-convex profiles whose ratios ¢ of the thickness e to the breadth

b are increasing.
[

(128) . = I3
By aid of figure 19 was established-figure 20, which gives for the profiles considered the angles iop
as functions of ¢. In the same figure is represented the curve of the angles v of the zero lines
of the profiles considered with the corresponding chords.! :
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On account of the fact that the values of the ratio ¢ go on necessarily decreasing from the
boss to the tip of the blade, the optima angles of attack must also go on decreasing from boss to
blade tip. It thus follows, according to diagram 17, that the blade elements, whose blade
angles ¢ are a little smaller than 15° or larger than 75°, necessarily have small partial
efficiencies pmaz. According to the last, and on account of the relation H =2rr tg ¢ we can give
ourselves a general idea of the limits between which must be included the portion of the biade
which gives high partial efficiencies:

Ji4 .
Tm S o g g =V U I
(129) 7 5
0,6

Tm = 5770 ==
™= 2xrtg 1

1 These diagrams were estaolished using the data furnished py G. Eiftel “Complements de la Premiere Edition de la Resistance de P'Airet
1’ Aviation,” p. 15. As these data have been obtained at low velocity they are not of sufficient approximation to i used in propeller design.  As
is well known, the drag coefficients Xz decrcase for large flow velocities under which the elements of propeller nlades are generally working. There.
fore diagram 20 must give exaggerated values for the optima angles of attack.

1 The demands of practice often require larger sizes to be adopted for.the boss than are given vy this relation.
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These last relations bring us to the conclusion that a propeller of high efficiency must have its
diameter of the same order of magnitude as the effective pitch of its tip blade section. This remark
gives a solution to the question of the number of blades to be adopted for a screw.? For the
preliminary design of a screw, the condition (126) fixes the effective pitch H of the blade section
considered. We have
~ V = [
PEI=NH™H

The value of the effective pitch appears thus to depend upon the efficiency expected, and depends
upon the power absorbed only so far as the ratio c=e/b depends upon this power. It is the
blade area A and the screw diameter D which depends upon this power. If the diameter is
considered fixed by the relation .

D=2r,>=1,2H

it will be sufficient, for a given power, to adopt as many blades of a length of the order of r,, as
will be necessary to absorb the whole power. The limit to the number of blades is given by the
following considerations:

Fia. 21,

Let us cut the screw blades by a cylinder coaxial with the screw axis, and let us develop
in the plane the sections obtained. We will thus get the general picture represented in figure
21, where we have designated by & the distances between the zero lines of the blade sections
considered. By analogy to what we know about fluid resistance of systems of aerofoils, the
blade interference will occur only from the moment when the ratio

1y

(130) %=v

becomes smaller than a certain limiting value to be fixed by experiment. Actually we do not
possess any experimental indications of the limiting values for » in the case of screw blades.
For a first orientation in the question let us adopt

(131) v=1
which will bring us to the conclusion that for

(132) h=b

1 In his air-serew investigations S. Drzewiecki (see ¢ Helices Aeriennes,”” Paris, 1909), also reaches the conclusion that there exists a limit to be
advantageously used for the length of screw blades, and that the number of blades to he adopted for a screw depends upon this limiting length.
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an absence of screw-blade interference is to be expected. If we note that
(133) - p=2 tg o
the condition of absence of screw-blade interference will take the form
b .
(134) %r=a$sm<p

which means that under the assumptions made for absence of screw-blade interference the breadth
ratio must de smaller than the sine of the effective blade angle. This last condition can also be
written as follows:

(135) nb < Zrrsin ¢

We will designate the product of the number n of blades by their breadth b at a certain distance
from the screw axis by fotal breadth.

In the general case, without assuming the value of the coefficient », for the absence of
screw-blade interference, we find the conditions *

(136) h>vb
187) ' ;—ng‘=va$sin<p
(138) : b= tg o

When it is difficult to realize the condition (135), or, more ‘generally, the condition (138),

attempts will be made, however, to approach them as near as possible. But since, on the one
hand, as is well known, the maximum breadth by of the blades must be smaller than a certain
fraction of the screw diameter, and, on the other hand, the screw blades are working in a stream
quite well limited, in all probability the values to be adopted for the maximum breadth by can
be quite large. The limiting value which will be adopted for the total breadth nby and the
maximum breadth b, will fix the limiting number of blades.
' Since for a screw of high efficiency there exist superior limits for the diameter D, the number
of blades n and their maximum breadth b,, the thrust power, which can be obtained from a
propeller under given conditions, must also have a superior limit. If one tries to give to D, n,
and b, values higher than the limiting values, only the absorbed power—that is, the torque
power—will be increased, but the rapid decrease of the efficiency will lower the thrust power
developed by the propeller.

1 Some elementary considerations allow us to establish for the limiting value R, of h, for absence of screw-blade interference the formula

i
ho_bm‘z
which gives a value of » equal to
.
=2kz

This last formula gives a general idea of the value of the coefficient ».
For the realization of screws of large power, one can go beyond the limit

va < sin ¢

At the beginning we will have only a smali decrease of efficiency, but will be able to increase the power used.
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Making a summary of the foregoing discussion, the following rules can be formulated for
high efficiency propellers.

1. Each blade section must work under an angle of attack near the optima angle. For blade
sections we must adopt such profiles that their optima angles of attack are as small as possible.

II. The screw diameter must be of the same order of magnitude as the effective pitch of the tip
blade section.!

II1. The total blade breadth in each blade section must not exceed a value fized by the limiting
value of the breadth ratio (condition (137)).

IV. The maximum blade breadth must not exceed a certain fraction of the diameter.

V. For given working conditions there exists a limiting value of the thrust power which a pro-
peller can develop.
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Some investigators have made the following experiments for the determination of the
blade interference. They have first tested two identical screws. separately, and afterwards
have tested them coupled on the same axis. They have found that the efficiency of both screws
working together was different from the efficiency of each screw working separately. Such an
experiment does not prove at all the blade interference. As a matter of fact, two identical
screws coupled on the same axis will first of all have a double breadth ratio compared to a single
screw. But then, as directly follows from relation (93), the angles of attack of the different
blade sections, for the same values of the relative pitch, will take other values, the breadth ratio
having changed. The partial efficiencies will thus be modified and the total efficiency will there-
fore also be modified. Accordingly the modification of the efficiency of two coupled screws
is first of all a consequence of the breadth ratio variation, as long as the conditions (135) or
(138) remain satisfied. When we speak of blade interference, we shall always understand by
this a modification of the values of the empirical functions %; and 8 produced by the neighbor-
ing blades. It is only in the light of this remark that blade interference can be studied.

When two screws are coupled, the following circumstance can also take place. Let us con-
‘sider on one hand a screw with 2n blades, and on the other hand two screws with n blades each,
both coupled on the same axis. From the screw with 2n blades we can pass to the system of

11t is only for the blade sections for which the blade angles ¢ are near 45° that the partial efliciency will have the greatest values compatible
with the - srresponding optima angles of attack. But as H=2xr tg ¢, for p=x 45° we have
r gHg "
] 2 6
For a serew of high efliciency the effective pitch is of the same order of magnitude as the diameter. We thus see that it is the blade sections
near the boss which will realize their maximum partial efliciency corresponding to the optima angles. But as p starts to vary slowly with e, the
partial efficiencies will generally first start increasing from boss to tip blade, and only afterwards, approaching the tip, will decrease. All the force-
going results from the fact that i and ¢ decrease from boss to blade tip.
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4

two screws with 7 blades displacing, for example, the odd blades of the 2n blade screw along
the serew axis. We will thus be brought to the picture of the figure 22, where I, I1, 111, IV,
V represent the developed sections of a 2n blade-screw and I, II’, III, IV’, V represent the
developed sections of two coupled n blade-screws. It is easy to see that in the first case the
sections are disposed at the same distance h, and that in the second case the distances between
the sections are on one hand increased up to A” and on the other decreased up to &’. If we
wish to maintain the distances between the blade sections considered in the case of two coupled
screws, we must make the blades of the two screws approach in the sense inverse to their rota-
tion according to the scheme I, II”, 111, IV”, V. In figure 23a are represented two screws
coupled according to the scheme I, I/, III, IV’, V and in figure 23b according to the scheme I,
117, 111, IV”, V.  This last remark explains the experiment with two coupled screws for a sym-
metrical and asymmetrical position of thelast, made by G. Eiffel,! which showed a small increase
of efficiency when the two screws were brought nearer one another in the inverse sense of their
rotation. From the same experiment it follows that the interference of the screw blades is not
large, because the results obtained for different dispositions of the screws do not show great
differences. But the sum of the powers developed by each screw separately differs sensibly
from the power developed by the two screws when coupled, which show the very sensible
influence of the breadth ratio variation. When it is required to maintain for two coupled
screws the equality of distances between the-sections of different blades, it will be necessary to

give to the blades of both screws or to the blades of one screw a special form not difficult to find.
' All the foregoing relates to the study of the screw-blade elements, considered separately.
We will now pass to the study of the screw-blade elements, considered together as a system.
1 shall begin by two general remarks.

»

e @ pubip

F1G. 23a. : , Fig. 23b.

Remark I.—Let us consider each blade of a screw divided into n elements. Let us des-
ignate, respectively, by AQy, AQ, - - - AQn; AC, AC, —o .. AUy py Py o Pn the partial
thrusts, the partial torques, and the partial efficiencies of the blade elements equidistant from
the screw axis. We have:

_yaQ . _Vag, _ V@,
Mm=QAC, ’ PTRAC, " T QAl,
Let us designate by 7 the total efficiency of the blade screw. We have:
_ VAQ,+ VAQ,+ -.-... +VAQ,
T=QAC, + QAC, + - ... +9A0,

1 See G. Biffel, “ Nouvelles rechorches sur la resistance de Vair et 'aviation faites au laboratoire d’Auteuil,” Paris, 1914, p. 345.
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Let us now examine the correlation existing between the total efficiency 7 and the partial
efficiencies p,, p, --.--- pn. For that purpose we shall use the following-geometrical method.
Let us consider the vectors

0, 0 ... Us
whose projections on the axis of abscisse are equal, respectively, to
QAC, QAC, ... .. QAC,
and on the axis of ordinates are equal to
VAQ, VAQ, ...... Vg e
Let us build, starting from the origin, the geometrical sum U of the vectors U,, U,...... U,
(see fig. 24) '
U= U‘ + U, + ------ + U’l
v, S Neere P aa
§ 7o ‘
aq) g, r{c{/ 1
y Eo 1 i{ - 4 ( ”
o

, a'fz'famvj;.‘!'f"LJ j ~
2 R8G -, N RAG i 4G,
Fie. 24
The tangent of the angle of inclination of each vector U, U, ...... U to the axis of abscisse is
just equal to the corresponding partial efficiency
' va va VaQ
tg (Uv X)=p1=-SKg:‘; tg (Uz: X)="’=§—A—% R 4 (Um X)=Pn='Q‘A%:
while the tangent of the angle of inclination of the yector U is equal to the total efficiency
L _VQ_V(8Q+AQ+...... AQy)
tg (U, X)=1=G0=GaC, 70, +...... AC))
Q being the total thrust produced by.the blade screw, C the total torque applied to its axis.
The sides of the polygon U,, U, .. .. .. U,, U are necessarily making with the axis of abscissz
angles smaller than 45°. Considering thus the vector U as the geometrical sum of the vectors
U, U, ...... Uy, we see directly how the total efficiency is built up of the partial efficiencies.
We can now see that the total efficiency 7 not only depends upon the values p,, p, .. .. .. p, of
the partial efficiencies, but depends also upon the partial powers VAQ,, VAQ, .. .. .. VAQ,;
QAC, QAC, .. .. .. QAC, because thé total efficiency depends also upon the length of the vectors
U, U, ...... U,equal to
U=/ VAQ, 880, ... . Up=1/V2Qq+24C,

In figure 25a is represented the case of a blade screw whose partial efficiencies decrease toward
the blade tip; in figure 25b the case of partial efficiencies increasing toward the blade tip; and
in figure 25¢ the case where the partial efficiencies first decrease and afterwards increase from
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boss to blade tip. In all the cases the total efficiency is increased when to the blade elements
with higher partial efficiencies correspond larger partial powers. 1t follows from the foregoing
that it is advantageous to give the greatest breadth to those parts of the blades where the
partial efficiencies are highest.

-

- l
!
|

—

7 e S5e.
] L2 <

Remark TI.—Let us examine briefly the question of the effective pitch of the whole blade
screw. When for a blade section the relative pitch becomes equal to unity, we have

H=—l¥,=#

and the knowledge of the advance which corresponds to =1 gives the value of the effective
pitch of the blade section considered. As we have seen, the value z=1is disposed in the inter-
mediate brake state which separates the propulsive state of screw work from the turbo-motor
working state (see fig. A). Practically, this interval is very short; that is why as a first approxi-
mation we can consider z=1 either when in the propulsive state the partial thrust becomes
equal to zero or when in the turbo-motor state the partial torque becomes equal to zero. By
analdgy with the conditic.s of work of a blade element, the value of the advance u,= VN,
which corresponds for the whole screw either to @ =0 or C'=0, defines the effective pitch Iy
of the whole screw -

H,=

2=
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We will designate by z, the value of the relative pitch which cofresponds to the effective pitch
of the whole blade screw. .

-7
=NH,

Let us now pass to the calculation of the thrust-power L, developed by the propeller and
the torque-power L, absorbed by the propeller. We have

(139) ' Q=2AQ=zqusv==sv=2qAS;

(140) . 0=280=3Y a8 =23 4g.
oQ Q Tp

Going from finite differences to differentials we get:

(141) , Q=28 V*[qrdr=x8V*[qd(+*) = ms V*1,
' 2wV wV (g x V3
(142) = ) f—%rdr— a fpd(ﬂ) =_._9__=

where we have introduced the notations
(143) : 1= f d(); 1,= f i)

We accordingly have

(144) ‘ Ly=QV=mV*[qd(r) = x5 V*],
= .y q - s
(145) | L=ca P f L3(%) = s V1,
o Jee 1,
(146) T A
faao

The calculation of the thrust-power L,, the torque-power L,, and the total efficiency »
is thus reduced to the quadrature of the two areas I, and I, limited by the curves of ¢ and g¢/p
plotted against 2. The investigation of the conditions of maximum of the total efficiency is
reduced to the determination of the maxima of the tatio 1,/1,. _

It must be noted that the integrals /, and I, are independent of fluid density. . As a con-
sequence, for different fluids the values of these integrals will depend upon the physical nature
of the fluid only in the measure that the empirical coefficient ¥ and the empirical function 8
depend upon fluid viscosity. '

It is also easy to see that, for a given blade-screw whose working conditions are varying,
the integrals I, and I, are functions of ‘the advance p only. In fact, for each blade element
g and p are functions only of the corresponding angles of attack, the last being funétions only
of the relative pitch x= V/NH; in other words, functions only of the advance u= V/N, the
effective pitches H of the different blade sections of a given screw having evidently invariable
values. From the foregoing follows:

-
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1. The total efficiency 1 of a given screw is @ function only of the advance u.

_I1 (l‘)
(147) _ =7
2. The ratios
Q L,
(148) Tﬁ=1l'511(#)," V'§=1I'51,([.l)

are also functions only of the advance. :
Let us compare the work of a propeller when advancing to its work at a fixed point. Start-
ing from the relation (116) we get , '

(149) Q= 480* [q'Pdr = wo @ [¢'d(r*) = L'y,

and on account of the relation (99) we have _
(150) Lo = 00="/,m3% [’ tg (o +B8)d(r*) = 4/smd¥’ f ﬁ%—"id(rv =iy,
using the notations )

(151) fgd) =Tw); Y[ tg (6 +B)A) =T'3)

these last two integrals being functions only of the advance p, as is easy to see. The integrals
I', and I, are connected with the integrals I, and I, by the following relations:

2 3
(152) l,‘=l—1“7ré Ly I’z='8‘“;s‘lz

For the work of the screw at a-fixed point the relations (149) and (150) go over into

(153) ‘ Qo= 782,2[¢'d(r*) = m3Qe*C,

(154) Lo=41sei02 st (o-+ %) = gms0s [ Lo5md(st) =i,
(]

with the notations

(155) [qod@) =Cy; s[qot8 (¢ +B)A(*) = Cs,

these last two integrals being, for a given screw, constant quantities independent of the angular
velocity 2,. In fact, ¢’ and ¢’otg (¢+B,) are functions only of the angle of attack i, and
the last is independent of Q.. The constants ¢, and C, are the limits, independent of the
angular velocity o, toward which tend I’, and I’, when V tends toward zero. The two
constants C, and C, thus appear as two fundamental characteristics of the dimensions of the
blades of the propeller considered only. We thus see that the thrust @, and the power L, are
respectively proportional to the square and the cube of the number of turns.of the propeiler.
The differences from these square and cube laws experimentally observed are due, as has already
been mentioned in the introduction, on the one hand to the deformation of the blades, and on
the other hand to the approximation of the velocity-square law for fluid resistance.! The
calculation of the thrust @, and the power L, of a screw at a fixed point is thus reduced to the

1 See, for example, the experimental research of Ch. Maurain and A. Toussaint, Bulletin de Institut Aerotechnique de PUniversité de Paris
Fascicule III, 1913, where for all the screws tested the differences from the square and cube laws have been calculated. These differences
are generally amall.
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quadrature of the two areas C; and C,, respectively limited by the curves of ¢/, and ¢’, tg (¢ +8,)
plotted against r, and . Dividing (149) by (153) and (150) by (154), we get

(156) QQ ﬂ’ r (#) %_ g* r, (:;)

For 2=, these last two ratios are functions only of the advance x> The expressions (149)
and (150) show us that the thrust @ and the power L, of a propeller can be written in the form.

(157) Q=3N1," (u); La=3N*L*(n)
adopting the notations

(158) . 4L =1"=x2l,; 8%l = L," = mu*L,.

If we develop 1,” and 1,” in powers of , and take the first terms of the series obtained, we shall
find the different approximate expressions which have been proposed by different authors for
the representation of Q and L,.

Let us now examine the different conditions which can be met in the quadrature of the
integrals I, and I,. We will consider that for the angles of attack values near the correspond-
ing optima values are taken, so that we can admit the angle f=~0. Substituting in the relation
(93) the values of az and H, respectively, equal to :

_ akicos ¢; .
=28 (i)’ H-Pmige

and on account of =<0 and following paxz we find:

1— nb ki cos ¢
vV 27 2810 (p—1)
(159) PtBe= =T nb kicose |. mnb kicose

tg(e—1)  2mr2mmi(p o)t 2ar Zeini(p—1) | B ¥
These last equations constitgte two relations between the seven quantities:
vV, Q r
p, b, o, 1.

For each blade section working under given conditions, the quantities of the first group are
known quantities. The equations (159) thus connect with one another the four quantities of
the second group. We thus see that from the four quantities p, b, ¢, 4, two of them can be
arbxtrarlly chosen, or, more generally, for a given advance u= V/N, we can submit the four
quantities p, b, ¢, i to two supplementary conditions, adopting, however, for the angles of attack
values near the optima values while we admit =20.

The simplest case for the quadrature of the integrals /, and I, is the one which corre-
sponds to

(160) g=const; p=const.

% Ch. Maurain and A. Toussaint, in their research just mentioned, for the representation of the results of their experiments, use the ratio Q/Qo
and La/ Lo for =2 as functions of the parameter V/XND, which Is proportional to the advance u=V/N, while G. Eiffel in his experimental research
on air screws uses for their representation the ratios Q/ V3D+4and La/ V3D¥ as functions of the same parameter V/ND (compare with the relation (148)).
‘These investigators came to these conclusions by way of considerations of similitude.
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because under such conditions we have directly

- D2 * Dd )
(161) I.=q—4'; IF%; .

(162) . n=p

expressions in which D is the blade-screw diameter. The condition ¢=const brings with it
az =const, and thus the condition (92) shows us that we have

wv=const. - -

The screws with constant load coefficients along the whole blade produce thus a slip stream
with a uniform velocity in its cross section. That is why we will call such blade-screws screws
with uniform slip stream.! The condition p=const obliges us to adopt for the partial efficiency
such a value as can be realized for all the blade sections; the blade section with the lowest
efficiency will thus fix the superior limit for the total efficiency. The screws with uniform slip
stream will thus always have a reduced efficiency. The relations (160) have to be used for
the ‘calculation of the breadths b and the angles of attack i of all the blade sections of a screw
with uniform slip stream. : , _

Let us now liberate ourselves from the condition p=const and see how the total efficiency
can be increased. It is easy to see that we have first of all to adopt for each blade section the
optima angle of attack. If we now would like to maintain the slip stream uniformity, thatis,
g =const, the values of b, ¢, and p will thus be fully fixed. But the screws of highest efficiency
will be obtained when the breadth b is determined, not by the condition g =const, but directly
by the condition of maximum of the total efficiency . For the propellers of highest efficiency
we have thus to seek for the law of variation of the breadth b along the blade which makes a
maximum the integral ratio I,/I,=n. The problem of the research of the most advantageous
shape to be adopted for screw blades appears thus as a fully determined problem. Remark I
of this chapter gives a first orientation in the last question. After these general considerations
we will now pass to the detailed study of the question of design of propellers which have to
work under given conditions.

THE PROBLEM OF PROPELLER DESIGN. -

The design of a propeller which has to develop a given power and is destined to work with
a given advance u constitutes, as it were, a double problem. For the evaluation of the work
of a blade screw we must know the exact dimensions of the blades. But the dimensions of the
screw blades are fixed by the strength of the blades, which have to be able to resist the forces
to which they are submitted. In the general case those forces can be exactly evaluated only
when the dimensions of the blades are known. We are thus obliged, for the calculation of a
screw, to adopt @ prior: its approximate dimensions, and by a series of calculations of the screw
work and verification of its strength, to satisfy, by successive approximations, all the conditions
of necessary strength and power demanded. "

We shall in the following indicate a general method which will not only allow one to decide
a priori upon the principal dimensions of a blade screw having to work under given conditions,

t It is evident that we have here only to do with uniformity of the slip velocity v. The race velocity has for its expression
remZ 0 v ig (o +5)
and for v=const, which brings with it sz=const, will be constant only if {g (p+8)=const. In the case of propellers the quantity tg (e+8) is

always variable along the blade. But we shall see,in the following that fans and helicopter scrows can be built with e=const. In such a case we
will have tg (p+8)=const, owing to 82¢0 and rw will be constant when v =const. :
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but which will resolve, by simple reading on a diagram, the general problem of the screw selec-
tion. Let us thus consider to be known, as a first approximation, the blade dimensions of a
screw which has to work with a given advance p= V/ N, and for which we have to calculate the
efficiency and the power it has to* develop. For such a calculation, the quantities k; and 8, or
K, and K, have to be known for all the blade sections of the screw considered, and also the
angles v of inclination of the zero lines to the chords of the different sections. These empirical
quantities have to be determined from experiment performed at velocities of the same order of
magnitude as the one under which are working the screw blade sections in their motion relative
to the fluid, and in the same fluid as the one in which the screw considered will have to work.
Actually we possess only very few data on the above-mentioned empirical functions at flow
speeds occurring in blade-screw working. Especially for water we possess scarcely any data at
all, the reason being that fluid resistance measurements in water are very troublesome. By
analogy with experiments in air we can expect to get no more than a general idea of the order
of magnitude of the quantities k;, 8 and 7. :

The experiments undertaken up to this time allow one to draw the conclusion that the lift
coefficients K, do not vary much with the velocity, but that the drag coefficients K, sensibly
diminish, which is an advantage for the blade-screw efficiency. The absence of sufficiently
accurate data for the empirical functions kq, 8 and v is actually the only difficulty in the exact
caleulation of blade screws. In the question of propeller design we find ourselves actually in
nearly the same condition as at the time when for the problems of strength of materials we did
not possess sufficient data on the coefficients of resistance and the elasticity modulus. The
author hopes that .this lacuna will soon be helped by the use of a new method—which will be
indicated in the folowing— based on the properties of the screw itself, which allows the meas-
urement of the quantities k;, 8 and v in any kind of fluid, and in the exact working conditions
of the screw. We will thus admit that the empirical functions k,, 8 and v have been evaluated
by one or another method and consequently are known for all the blade sections of the screw
considered. . )

Let us designate by S(4) the system of the effective angles of attack under which are working
the different sections of the blades of the screw considered. For a screw already built the system
S7i) has to be determined. For a new screw, to be built, the system S(i) has to be chosen,
and from its knowledge the effective pitches, or in other words the effective blade angles ¢ of the
different blade sections have to be determined in such a way that the system of angles of attack
. 8(i) actually establishes itself when the advance reaches the given value. The angles of attack
of the system S(i) are always decreasing from boss to blade tip. The system of angles of attack
S() to be adopted depends upon the properties which we wish our screw to possess. If we wish
to build a screw of high efficiency only, it is the system S(i,p) of the optima angles of attack
which has to be adopted. But certain necessities of practice of blude-screw applications can
demand some departure from the system S(io5). In the following we shall come back in full
detail to this important question.

The values of the effective blade angle ¢ and the effective angle of attack i, which for a given
blade section correspond to one another are given by the relation (159) which may be written

LA (1-az) tg (p—1)
(163) M 1+az Q+az)tgetglp—1)
with ]
(164) az=a- ki cos ¢

2 sin® (¢ —1)
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in which wé admit 8==0, that is, the system 8(3) to be close to the system S(,5). The calcula-
tion of either ¢ or 4 from this last relation (163) is almost impossible by aid of actual algebraical
methods; and yet the solution of this equation is necessary for the exact determination of these
angles. That is why I'have been led to seek for a nomographical solution, which, happily, can
be given. I have made use of the method of parallel-tangential coordinates of M. d’Ocagne.

Let us first note, that for a propeller of good efficiency the quantity az is of the order of
o small number of hundredths only. This is on account of the fact that the angles of attacki to
be adopted are always small and that the coefficient k;, of the same order of magnitude for
air and for water, has also the value of some hundredths only. = Although we adopt the formula
(164) for az, it does not follow that the linear law for the coefficient k; must necessarily be
adopted; in each case we can consider the value of & taken from the relation k==Fki/s. But it
must be noted that, for a given blade section profile and for the interval of the small values
of the angles of attack which have to be used, the coefficient k is constant to a good approxima-
tion. After ascertaining that az is a small quantity, let us develop the relation (163) in series
according to the increasing powers of az and neglect the terms of superior order. The error
 thus committed is out of consideration for the demands of practice of screw design. We thus
find:

|4 1 .
el m-l-aﬂl +tgotg(¢—1)]—1=0

and substituting for az its value (164) we get

v 1 . ic08¢ .

(165) -0 tg(‘p_i)-i-ak 2Sin,(¢_i)[1 +tgotgle—i)]—1=0
and finally

|4
(166) r—s-zM+aJcN—1=0‘
using the notations

1
M= tgto—)

(167)

__icos e s 1 CO8 i
N=gamr oo Ll Ttgetele )= G e =D sn 2(e =7

On the other hand let us consider the equation

(168) w ,L-z v Ltz _,_
I, l‘2Ly+E Z”2Ly_1_0

which we refer to the system of the X and 'Y axes represented in figure 26. When in this equa-
tion (168) we consider u and v as parallel-tangential coordinates, it will represent the point
(z, y) defined by the sheaf of straight lines (u, v); when we consider z and ¥ as point coordinates,
it will represent the straight lines (u, v) which the point (z, y) describes. 2L is the distance
between the parallel axes of the u and v, counted along the abscissae axis; [, and }, two arbi-
trary numbers introduced fci the convenience of the scale choosihg. The angle between the

1 I{ the angle 8 were not neglected, we would have found

1 { cos(i+8)
7 W= ok TE s ae—n 0

But as the variations of the cosines of amall angles are smslil, the error committed neglecting the small values of 8 is very small.
'
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ordinates and abscissae axes is arbitrary. Let us establish a univocal and reciprocal corre-
spondence between the terms of the equations (166) and (168) as follows:

V. .u . v
TR
L-z Ltz
M=1, 2—L'y-’ N=1,m—
%3
(T\
| ——
. i
:
15/
|
' o 2.
| o &
A/

which corresponds to

(169) u=l,%; v=1-ak

‘ . N, -ML, L,
(170) 7= LNZ+MZ,,’y NI, + I,

The equations (169) represent in parallel-tangential coordinates a system of straight lines;
-and the equations (170) represent in point coordinates two families of curves, with ¢ and ¢ as
- parameters. Each straight line (169) which goes through the intersection of two of the
curves (170), or all the curves (170) which intersect one another on one of the straight lines
(167), defines a system of values of V/rQ, ak, ¢, ¢ which satisfies the equation (166). For the
tracing of the nomogram which gives the. solution of the equation (166) and which I call the
incidence nomogram I have'adopted the values

tg (2, ¥)=0.75; ,=1; ,=12.5

The incidence nomogram is joined to this memoir.! Its use is very simple; it is enough to
join by a straight line two.given values of V/rQ and ak, in order to read on the curves which
" cut one another on this line the values of ¢ and 4 which correspond to each other.? Thus for
V/rQ@=1 and ak=0.01; for 1 =5° we find ¢=52°; for ¢ =55° we find ¢=7°, and so on. The inci-
dence nomogram gives thus the dire¢t and complete solution of the finding of the effective blade-
angle ¢ of & blade section when its effective angle of attack i is given, and of the finding of the
eﬁectlve angle of attack i under which a blade ‘section is working when its effective blade
angle ¢ is known

1 For sll the details concerning this type of nomogram see ‘“Traité de nomographie,” by M. Maurice d’Ocagne, $§ 57 and 58, p. 125, and also
§ 121, p. 320.
s For its use it is good to cover the nomogram with a piece of tracing paper.
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After we have found for all the blade sections of the screw considered the values of ¢ and 4
which correspond to one another, it will be easy to calculate the values of the function

__@g ks co08 o
AZ2=5r 2sin®*(p—1)

for all the blade sections considered, while all the other quantities which figure in the expres-
sion of az are known for each section of & given screw blade. Knowing az we will calculate
the values of the load coefficients

— (55)

1

F16. 77

for all the sections considered. We shall thus be able to plot point by point the curve of ¢
against 7* (see Fig. 27). The quadrature of the area limited by this curve will give the value

of I, For the calculation of I, we shall have to determine the partial efficiency p of each
section of the given blade, by aid of the formula

. tge _ 14
(171) P=Ttg (o+B) 2nrNtg (p+8)

in which it is necessary to take account of the values of the angle 8, which has a sensible influ-
ence on the partial efficiency, especially when this angle is negative. The partial efficiencies
p once calculated, the curve of g/p as a function of 7 will be traced point by point, and its area
will just be equal to ,. Knowing I, and I, the values of the thrust power L, and the torque
power L, will be directly found for the blade screw considered. We have

L,=7sV21; Ly=mdV?I,
And the value of the total efficiency ¢ is equal to

The total thrust Q produced by the blade screw and the total torquéa C applied to its axis are
equal to
o-Ls; o=t
132025—19-—-5
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. For the purpose of rendering easier the calculation of az and ¢, I have made a second nomo-
gram, also joined to this memoir, which I call the load nomogram, founded on a basis similar
to that used for the incidence nomogram.

Let us take the decimal logarithms of the expression

(172) az=ak2—s’;‘f,i———éfi) =ak- .M=ca7c-—‘nc!
in which we have put _
Y, 1 €08 ¢

=2 8in?(p—1)

and where ¢ is an arbitrary quantity. We find:

. 1
loga,z_’_logtﬁ_1 -0
(173) logil'_[ logg
¢

Let us establish a univocal and reciprocal correspondence between this équation and the equation

%, L~z v ,L+z .
Lherytyhery 10

as follows (
1
log az= %; logm=£
M__2Ly _ 2Ly
g T=TT—o 5T+
which gives '
«(174) > u=[logaz; v=l,logﬁ
e R 1CO8 ¢

(175) 7= Ly V=L R 8 2o )

For the tracing of the nomogram I have adopted: the angle between the axes of ordinates and
abscissae equal to 90° (see fig. 26); I, =1, =1 and log c=1.5, with =0. The second of the equa-
tions (174) represents a family of curves having ¢ as parameter when ¢ is taken as abscissa and
y as ordinate. Each point (i, ¢) of these curves projected on the Y axis is situated on the
straight line (4, v) corresponding to a system of values of az and ak, which with the foregoing
values of ¢ and ¢ satisfy the equation (172). The use of the nomogram follows from this last
remark. Each straight line joining a point of the az scale to a point of the ak scale cuts the Y
axis in such a point that the corresponding values of ¢ and % are situated at the intersection of
the parallel to the z axis going through this point and the family of curves defined by the
second of the equations (174).! Thus for ak=0.008; ¢=38°; i=4° we shall find az=0.04.
As ¢ is a function of az only, I have joined to the scale of az a functional scale which gives
directly the corresponding values of ¢.?

It is to be noted that the incidence nomogram as well as the load nomogram are inde-
pendent of the fluid mass density 5. These nomograms might thus be used for the computation
of a screw in any fluid, the physical nature of the fluid will intervene only in the values to be
adopted for the coefficient %.

t For all the details concerning this type of nomogram see “ Traité de Nomographie,” by G. &’Ocagne, pp. 145 and 324.
1 The load nomogram, although established for =0, can be used with a practically sufficient approximation for values of 8 near zero.
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Summing up the foregoing, for the design of a propeller, we have to proceed as follows:
A certain number of sections, whose general configuration has to be fixed, are chosen on each
blade. Practically from four to eight sections are sufficient. Having chosen the angles of
attack under which we wish our blade sections to work, for the given advance u= V/N, the
effective blade angles ¢ will be found by aid of the incidence nomogram. From these values
we will be able to calculate the quantities, "

H
176) so=Ttge

for all the sections considered, and thus will be able to establish the propeller drawing ! knowing
also the corresponding values of the angles y which the zero lines make with the chords of the
blade sections. By aid of the load nomogram, ¢ will be calculated and by aid of the formula
(171) p will be calculated. Plotting the curves of ¢ and ¢/p against %, by a quadrature of the
area obtained, one can find I, and I, and thus L,, L, and 7. The same method has to be
followed for the verification of the power of a screw already built, only the order of finding ¢ and i
is reversed.

The knowledge of the curves of ¢ and g/p gives a complete picture of the contribution of
each blade section to the work of the whole blade screw, and thus allows one to find in magni-
tude, as well as in sense, the load distribution along the blade, which has to be known for the
computations of blade stresses.

I must finally remark that the neighborhood conditions can have an influence on the work-
ing of the propeller; that is why when such an influence is to be expected it is good to build
the propeller with a small excess in diameter, whose progressive shortening when testing the

_propeller will easily allow us to bring the propeller to do exactly the required number of turns
N at thespeed V. The diameter thus obtained will be the one which, under the given neighbor-
hood and working conditions, exactly corresponds to the disposable power L.

The author has designed many propellers by the method above described and has convinced
himself of the entire availability of the foregoing method, not only for the design of propellers at
their maximum efficiency, but also for the tracing of the total efficiency curve as function of the
advance u for a wide interval, including the maximum of the total efficiency. These computa-
tions have shown, as already mentioned, that the lift coefficients K, are very slightly influenced
by the value of the flow velocity, but that the drag coefficients K, decrease with the increase of
the flow velocity. The last follows from the fact that the values of K, corresponding to low
flow velocities when used for propeller calculations always lead to values of the total efficiency
lower than those experimentally measured.? ' .

After we have learned to calculate the power developed and absorbed by a propeller, we
shall pass to the general discussion of the fundamental problem of the selection or adaptation
of propellers.

THE THEORY OF THE UNIFORM SCREW FAMILIES.

I call uniform family a screw family whose blades can be made geometrically similar by a
twisting of all the blade sections in such a way as to bring them all to have a zero pitch. All the
screws of a uniform family thus have, at homologous distances from the screw axis, geometrically
similar sections, but their pitches have different values. I divide the screws of each uniform
family into varieties. Each variety is characterized by the fact that 2 tLo homologous blade
sections are working under the same angles of attack, and thus each variety is defined by a given

1 For all that concerns the blade-screw drawing see Note V at the end of this memoir.

3 T will remember here that the expression (171) of the efficiency is fully independent of any hypothesis. Thus if the calculated value of the
thrust, as above indicated, will correspond to the experimentally measured thrust, but the calculated efficiency will be found in disagreement with
the experimentaily observed, this can only mean that the values used for the angle @ are not sufficiently accurate.
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system S(i) of angles of attack. Three principal varieties have'to be considered. ~The optima
or mazima variety is the one for which all the blade sections of the screws considered are working
under the system S (i,,) of their optima angles of attack. The minor variety is the one for which
all the blade sections are working under the system S, () of angles of attack, all smaller than the
corresponding optima angles. The major variety is the one for which all the blade sections are
working under the system S,(i) of angles of attack, all larger than the corresponding optima
angles. Each blade screw can be considered as belonging to a certain uniform family. It is
this last remark which makes the generality of the theory of uniform families.

To the screws of a given variety, characterized by a given system S(i) of angles of attack,
there corresponds for a given advance p=V/N, a system of effective blade angles ¢ and a
system of effective pitches H which we have learned to calculate. The screws of a variety
defined by a system S(i) and having to work with different advances 4 are not geometrically
similar. Each screw of the optima variety, for the advance under which it has to work, will

. necessarily work at its maximum total effi-

7 ciency, because for any other value of "the

Segn) advance, angles of attack different from the

Sw s optima angles will establish themselves, all

the partial efficiencies will thus be lowered,

and the total efficiency will therefore be re-

duced. In the same way it will be easy to

see, considering the curve of the total effici-

ency n as a funciton of the advance p (see

fig. 28), that a major screw for its advance

L H will necessarily work on the left hand of the

‘maximum efficiency and that a minor serew

"~ will work on the right hand of the maximum

7 efficiency. The last follows directly when

one remembers the law of variation of the angle of attack along the curve of the efficiency
plotted against the relative pitch (see Chapter II). '

‘We shall now establish the fundamental relations which unite the screws of any one variety
belonging to the same uniform family. Let us adopt for each screw of our variety a reference
blade section, which can be, for example, the one situated on the third of the blade length
counted from the tip. According to relation (159), page 60, we have

Fia. 28.

177) ‘ ' %=f (ak, ¢,%)
with

Q=27N; H=2xrtg ¢
For all the blade sections of the screw considered the quantities r, ak, and 7 are known. The
knowledge of the advance fixes by aid of the relation (177) the blade angle ¢ of each blade
section; and, inversely, when the blade angle ¢ is known, the value of the advance under which
the given screw is destined to work can be found. The knowledge of the blade angle of one
blade section fixes thus the values of the blade angles of all the other sections, the system
S (i) being known. For a given screw of a given variety the blade angles of all the blade sec-
tions are functions of the blade angle of one of the sections. Let us now refer the relation
(177) to the reference blade section. We thus can write

Y e T = f(ak, 0, D)
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or
v 2 .
ND= =—B—r'f (ak, o, )

designating by £ the ratio V/ND, which we will call the relative ag}vance. For the reference
blade section #/D is a constant, and as its blade angle ¢ is equal to

tg pm B =B D
€ ¢=%mr~ D Zrr
we see that we necessarily have g

(178) ' , ' =4®

For all the screws of a given variety of a uniform family the series of the ratios of the effective
pitches of the reference blade sections to the corresponding diameters are functions of the relative
advance §.

Let us designate by L', the power absorbed for a given value of the advance x by the screw
of our veriety whose diameter is equal to unity. We have

(179) Ly=n8V? f %d(rz)=1r6V’I’,

Let us first consider in our screw variety all the screws for which the ratio V/rQ has the same
value for all the homologous sections; that is, the screws whose diameters are proportional to
the corresponding advances. For all these screws, for each homologous section, the quantities
ak, ¢, i will have the same values; the quantities ¢ and p will thus also have the same values.
Under such conditions the value of the integral I, will be proportional to the square of the
diameter of the screw considered; that is, for any one of the screws considered we will have

L= VD" f %d(r’) = V3D,

the integral I’, corresponding to the screw with the diameter equal to unity. Let us consider
now in our variety all the screws of the same diameter, but for different values of the advance
u. The quantities ¢ and p will be functions of the blade angles ¢ only, or, in other words, of
the ratios H/r or H/D, the ratio D/r being constant for all the homologous sections. But
HiDis a function of the relative advance £ for all the screws of our variety; we thus will have

Lo Do)

or
NN L, D*N?
(T’) SV T o(&)=B(¢)

Varying first the diameters for V/rQ@=const and afterwards varying the advance u for
D =const we will run through all the screws of our variety. We are thus brought to the
following conclusion:

For all the screws of a given variety of @ uniform family the series of the ratios N2Ly/wsV?® is
a function of the relative advance .

By quite analogous reasoning it will be easy to see that the total efficiency 5 of all the

screws of & given variety of a uniform family is also a function of the relative advance £ only;
that is

(181) ' 1=C(%)
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The functions A(§), B(£), C(¢) are characteristic for a given screw variety defined by a
system S(i). If we calculate a series of screws of a certain variety we will be able to trace
point by point the curves ,

H/ID=A(%); N*L,/n8 Vo=B(£); n=C(§)

For each system S(i) of angles of attack we will get a group of curves.. We will arrive at a.
full picture of the properties of a uniform family when tracing a system of three groups at
least, of curves 4(¢), B(§), and C(£): A first group of curves, 4,, B,, C,, for a minor variety, -

8885,
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a second group of curves, 4, B, C for an optima variety, and a third group of curves, 4,, B,,
G, for a major variety. Such a system of curves corresponding to a uniform family is rep-
resented in figure 29.! This system of curves gives the complete solution of the problem of
the selection of a propeller. In fact, suppose.we have to calculate a propeller to absorb a
power L, at the advance u. The quantity N? L,/= &V will be calculated; and on the curves
B,, B, B,, will be read three values of £= V/N D, from which will be deduced three diameters

1 This figure corresponds to a uniform family of air-screw of the ¢ Dorand ” type with constant constructive pitch along the blade. See G. Eiffel,

*Nouvelles Recherches sur 1a resistance de Vair et ’aviation faites au laboratoire d’Autewl,” atlas, Plate XXXIII, In figure 29 the curve H/D
is referred to the constructive pitch,
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D,, D, D,. To the three abscissae § will correspond on the curves A,, 4, A, three values H,/D,,
H/D and H,/D,, and on the curves ¢, C, C, three values 7, 1, n,. Knowing D,, D, D, from
the ratios H,/D,, H/D, H,/D,, we will find three values H,, H, H, of the pitch. Plotting on a
diagram D,, D, D, as abscissae and H,, H, H, as ordinates we will get by three points a curve
on which, by interpolation and by extrapolation (not carried too far), we will be able to read
all the system of pitches H and diameters D of all the screws of the uniform famity considered
which satisfy the conditions of given power L, and advance u=V/ N (See Fig. 30.)

We thus see that to the data L, and u=V/N there corresponds an infinity of propellers,
among which we have to choose the most convenient for the application considered. The -
following considerations have to be taken into account. The efficiency of major screws goes
on increasing in a certain interval when the advance increases, and the efficiency of & minor
screw first increases when the advance decreases. Thus a propeller for a tug has to be a major
serew in order to be able to give good efficiencies over a large scale of loads. The propeller of
a trans-Atlantic ship has to be'an optima screw, for the maxima ship speed and the number of
revolutions of its engines. An airplane pro-
peller has to be a minor screw, to be able to
maintain a high efficiency when climbing. ~
In practice we are often limited by the space
disposable for the propeller. In such cases
there will only be left to us to approach as
near as possible the most favorable screw
type. :

When we have to choose the propeller
for a given application the great unknown
of the problem is generally the head resist-
ance or drag of the vehicle to which the pro-
peller has to be adapted. This is why one
must proceed as follows. We will determine
either the minimum speed which we can ex- ‘
pect from the vehicle and calculate forita o
major screw, or the maximum speed expected Fio. .
from the vehicle and calculate for it a minor '
screw. The testing of the vehicle with such a testing serew will, with full certitude, indicate
the speed which our vehicle can realize with the disposable power. If our first approximations
to the speed of the vehicle should in the first testing appear to be far from the observed speed,
a second testing screw would have to be used. Once having found the exact order of the
vehicle speed magnitude compatible with its power, we will then have only to calculate the
definitive screw which corresponds to the conditions L, and u» = V/N and which this time
will have to be a major, optima, or minor screw according to the screw application consid-
ered. Proceeding as indicated above, we will with full certitude find the very best screw
which the case considered can admit.

The demands of the strength of the screw blades will fix the limits between which diagrams
for screw selection can be established. It will usually be found necessary to establish a series
of diagrams for incressing power intervals. A series of such diagrams gives the complete
solution of the screw selection problem in its whole generality. For the important applications
of blade screws it will be good, after having found the screw dimensions by aid of the screw

1In the general case we will have as many points of the H curves as functions of D, as groups of curves 4, B, Chave been traced,
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selection diagram, to try by a series of calculations of the modified screw to improve its qualities.
The author hopes that he will have the pleasure of seeing in the near future the spreading of
the use of such screw selection diagrams for different uniform families, by aid of which will be
eliminated all the difficulties of the delicate problem of selecting screws.

The screw selection diagram allows one also to judge of the influence of the variation of
the number of revolutions on the efficiency of a propeller. It will be advantageous to
use gearing only when the increase in efficiency is able to compensate the losses in the gears,
if only the space disposable for the propeller or other conditions do not oblige us to use gears.
It must be noted that, although the efficiency of a propeller increases generally when its number
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of revolutions is decreased, this increase, however, is not very large. Thus for the speeds of
actual sirplanes included between 100 km./hr. and 200 km./hr., and numbers of revolutions of

* the actual aviation engines included between 1,000 and 2,000 revolutions a minute, it is only
exceptionally advantageous to use gears whose losses are generally greater than the gain in
efficiency. The gearing up of a screw brings also with it an increase in size and consequently
an increase in weight of the screw. On the diagram reproduced here (see fig. 31), by aid of
the screw-selection diagram of figure 29, for a number of revolutions from 600 to 3,500 a minute,
for an invariable power of 240 horsepower applied to the screw axis, there are calculated the
efficiencies n, the diameters D and the pitches H of the whole series of corresponding minor
screws. It is easy to see that the dimensions of the propellers go on increasing much more
rapidly than the efficiency when the number of revolutions decreases, )



Caarrer IV.

NEW METHOD OF MEASURING THEA COEFFICIENTS OF FLUID RESISTANCE BY AID
OF THE PLANE RADIAL SCREW. :

In the last chapter, for the screw working at a fixed point we have established the

following system of formuls: )
nb 2sin?(p—1,)

(105) a=3=T 605 GIEY
tg (0 —1
(108) " tg (¢+ﬁo>[1g+(; tg ()so—i,,) tg (0 +60]
(107)  Ve=rpotgle+Bo)
(108) Two=2rQyp, tg (¢ + B,)
(109) ) AQ, =26A8v,2 = 2608702052 b (¢ +Bo)
(110) AC,=28rASTQ,2p,? t (@ + Bo)
@i ‘ 20262 G = 1,00,

and we have shown that the angles of attack i, of the different blade sections are constant,
independent of the angular velocity of screw rotation, these invariable values of the angles of
attack being given by the relation (105).

Let us consider a screw defined by the conditions : :

. - g=const
(182) @ =const
k;=const

all along each blade. From these conditions it follows that

i,=const; p,=const-
along each blade.

The condition ¢=const expresses the fact that the screw blades are not twisted, having
a constant blade angle.

The condition @=const expresses the fact that each blade is limited by two radial straight
lines. ‘ :

The condition %,=const expresses the fact that all the blade sections are geometrically
gimilar. The thickness of the blades must thus go on increasing from boss to tip proportion-
ally to the distance from the screw axis.

1 call plane-radial screw a screw whose blades satisfy the foregoing conditions (182).

It is easy to see that for such a screw the equations (109) and (110) can be directly inte-
grated and we have

(183) Qo= m0p,*Q? t22 (0 + o) [yt —1y*]

(184) : Co="/smdpa’ Q> tg* (¢ +B,) [rs° _',.‘5] 3
7
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r, being the screw radius at blade tip and », the radius of the boss. The ratio of C, to @, is
equal to :
(185) ' Loty tg (o -+ B 0L

Q; 1 ¢ (] _7'3“""1‘

We will show that the empirical quantities %; and 8 or K, and K,, which correspond to
- the blade section profile used for the blades of a plane-radial screw can be measuerd by test-

ing the plane-radial screw at a fixed point and measuring its thrust @, and torque C,.
‘ In fact, knowing 7,, r,, @, and C, from relation (185) we find the value of tg (e +8,).

Knowing tg (¢ +8,) from relation (183) we find p,.

Knowing tg (¢ +8,) and p, from relation (106) we get tg(p—1,).

Knowing tg (¢ +8,) and tg (p—1,) the relation (105) gives the value of k,.

Let us designate by ¥ the constructive blade angle, that is, the angle between the chord
of the blade section and the plane of screw rotation, by « the constructive angle of attack and
by v the angle between the chord and zero line of the blade section considered (see fig: 32).
We have: : ’

(186) ' e=y¥+y
and
(187) ' lo=a+y

- Fie, 32,

Suppose that, having measured @, and C, we have found

(188) et+Bo=¥+v+Bo=¢, .

(189) P io=¢+7‘io=\"_a=cz
The angle ¥ being known, we will have

(190) a=y—c,

Knowing thus for éach value of y the value of %; and the corresponding value of «, we
shall be able, by a series of tests made with different values of y, to trace the curve of k; a8

a function of
k{ = F (a)

The intersection of this curve with the axis of abscissae will give us the value of v, and we
shall thus be able to calculate the values of 8, and %, which correspond to each value of y.

(191) . ﬁo=c1_"l""7
(192) To=2Cy =P —
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We will thus obtain all the necessary data for the tracing of the curves of k, and 8 as functions
of i; or, if we prefer the curves of K, and K, these can. be directly deduced from those of
k; and 8. :

We thus see that for the measurement of %; and g or K, and K, as functions of i, it is
sufficient to take small plane-radial boards, whose cross sections have the profile to be studied,
and to fix them to a boss permitting one to use them as blades under different values of the
constructive blade angles’¢. Measuring by a series of tests Q, and C, for different values of
v of such a plane radial screw, there will be found, as explained in the foregoing, first the series
of corresponding values of k, as functions of «; afterwards, v having been determined, there
will be found the series of corresponding values of k, and @ as functions of 1.

I will not stop here to give the details of such experiments or to discuss the precautions
to be observed for the exactitude of the measurements.

The importance of this experimental method consists first in its experimental simplicity,
since we have only to make measurements upon a screw working at & fixed point; and, further,
it is the only method which allows measurements at the same great values of speeds of flow and in
exactly the same blade-screw conditions as n actual use; and this in any fluid, water, air, etc.
The use of this method will without any doubt allow us to elucidate many questions of first
importance about fAuid resistance at high velocities and in different fluids.!

Although it is nof my intention in this first memoir to treat the question of the screw
working at a fixed point, to which a separate memoir will be devoted, I will, however, give a
brief summary of the properties of the plane radial screw, which it will be interesting to note,
and which will show in what measure the present screw theory can in reality treat any case
of screw-working, including the case at a fixed point, which has always been considered, up
to the present, as the most difficult to investigate. '

GENERAL PROPERTIES OF THE PLANE-RADIAL SCREW WORKING AT A FIXED POINT.

When we huve to do with a blade screw working at a fixed point, its efficiency po is the
quantity which measures for the screw when advancing its fan losses. The losses of a screw
at a fixed point thus reduce to the vortex losses p, and resistance losses p,. For each blade
element we have : '

(193) pe= g2 =200 48" (0 +B0)
(194) pp=1—po—pe=1—po[1+21g (e +Ba)] -

Let us examine briefly the conditions of maximum of p,. If we note that p, is an increas-
ing function of %, 0 far as 8, is nearly constant, and that 8, is a very rapidly increasing function
of 4 for 1,=<<i’, but that for i,>% the variations of B, are small, it will be easy to see that the
maximum of p, will occur for o=t and 8,=0. The conditions of maximum of the efficiency
of a blade screw at a fixed point are thus the same as for a blade screw when advancing. We
have . (‘ "

max glo—?
(199) | P g e[l +2 tg ¢ 18 (0 —1)]

In figure 33 have been traced by aid of this equation a series of curves of the efficiency p,=** as
functions of ¢ for different values of i,=1. It is easy to judge by aid of these curves about the
maximum which the efficiency p,™** can reach.

1 According to an agreement which has been made between the author and the National Advisory Committee for Aeronautics, the author
has permanently withdrawn from the United States Patent Office his pending patent on plane-radial screws, and has thus abandoned to the Public
Domain the use of the plane-radial screw in the United States.



76 ANNUAL REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

When, for a blade section of a given profile, values for ¢ and 4, have been adopted, by this
fact the value of the breadth will be fixed. In this same figure 33, by aid of equation (105),
a series of curves of the breadth ratio have been traced as functions of ¢ for different values of
=4/, and consequently 8,=0. On the other hand, the limiting value of the breadth ratio is
fixed by the relation (134) of Chapter III. The curves of the breadth ratio are thus limited
from above, as a first approximation, by the curve of sin ¢ (see fig. 33).
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Finally, on this same figure 33, for the purpose of a quick ealculation of the slip velocity
Vo =7, po t2 o,

has been traced a series of curves of p, tg ¢, as functions of ¢ for different values of i,=1’, and
thus 8,2=0.

It has to be noted that the curves of figure 33 are independent of the fluid density. -

Let us in formule (183) and (184) put

(196) r1=cr2=c—2D— ’

o

3

D being the diameter of the screw considei'ed, and substitute Q,=2xN. These formul® can
then be written:

(197) Qo=14 7 (1—¢*) 8p,’ tg® (¢+B,) N°D*
(198) Q0o =Lo=1/5 7 (1—¢) p,? tg* (0 +6,) N°D»

(199) =4y 7 125 Q0 tg (p+6,) ND
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Let us give a quantitative evaluation of these last formule. According to figure 33 it
will be easily seen that we will have good working conditions adopting:

¢=15% 1,=6° a=0,25; p,=0,55

Introducing these 1ast values in the formule (197), (198), and (199) and considering 8,=0 and
=14 (air density) and neglecting the high powers of ¢, we get

(200) Q,=0,021 N2D*
(201) L,=0,014 N3D¢
(202) . ' L,=0,67 Q,ND -
From the last follows ) -
. Qo 3 [D?
(203) =0, 36‘/%—:
and ' -
(204) N=4,151 %;
217z
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Fi1G. 34.

On figure 34 is represented according to the relation (203) a series of curves which give
Q./L, in kilograms per horsepower for a plane-radial lifting screw, as function of its diameter
D, and for different values of L,. The power L, has been successively taken equal to 1, 5, 10,
50 and 100 horsepower. On the same figure, by aid of the relation (204) have been traced the
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curves corresponding to N=const for different values of N. We thus see that the thrust
furnished by a lifting screw increases with the increase of its diameter, with the decrease of
its number of revolutions and with the power. It is thus the screws of small power and large
diameter which turn slowly that will prove the best lifting screws. '

Let us calculate also, for the case of air-screws, their blowing capacity. Let us designate
by U the number of cubic meters of air that a fan can blow in a second. We have

(*r;
U= { 2ardr,
J 1
JO / ; 7
/

T T T I LA

o NBZEEED
"'Zﬁ\\“:’\" T "/X\ LT /.;o,.,.,?
A

so} €4
* b g \\

Vd

N
SIA N N TN N =T '
,SI(\\\ %> _ /’< N~ %l
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F1aG. 35,

and substituting for v, its value we get:

. Ty
U=2mp,Q tg (¢ +B,) f"’d";

r
and integrating we find !

T=T(1=¢) potg (0 +82) ND?
and substituting finally thé numerical values adopted above, we find
U=0,24 ND*

u_ 3D
L=V

and
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By aid of this last relation the curves of figure 35 have been traced and they indicate the value
of U per horsepower as function of the diameter D for different powers. A second system of
curves gives the corresponding numbers of revolutions. We see from these curves that for
fams, as well as for lifting screws, it is the fans of small power, large diameter and slow rotation
that furnish the best blowing action.

The plane-radial screw is thus able to furnish good lifting screws and good fans and its
simplicity makes it specially fitted for many applications.

Thus, for example, (see figs. 34 and 35) with a plane-radial screw working 10 turns per
second, that is, 600 turns per minute, we will be able to get:

L=1. 5 10 50 100 h.p.
~14 195 2.50 '3.10 3.50 m.
Q/L,= 6 . 5 4 3 kg./h.p.
UL~6 -35 25 1.3 1 m3/h.p.
Q,=8 30 50 200 300 kg.
U=6 175 25 65 100 m.?

In the practical realization of plane-radial screws one will certainly not be obliged, since the
screw is not used as a measuring instrument, to adopt the condition %; = const, that is, the screw
will be made with a thickness decreasing toward the blade tips. All the formulae established
in the foregoing can be used as a first approximation. In a memoir which will follow the present
I will treat in full detail the different kinds of lifting screws and fans and indicate the methods
of their design.

GEORGE DE BOTHEZAT.



NOTE L

THE THEOREMS OF MOMENTUM AND MOMENTS OF MOMENTUM IN THEIR APPLICATION TO THE
STEADY MOTION OF FLUIDS.

The theorems of momentum, moments of momentum, and kinetic energy have been called
the three universal theorems of motion by Paul Appell, in the sense that they can be applied to any
mechanical system. The first two of these theorems are expressed by the following system
of equations: !

d dz
a-t—2<m5>= EEX.
d o/ dy
d_tz<m —-—)= ZZY,

dt (m dt =33Z,
4 5(zmdy - Y,
W x-mdt -y mdt =232 (xY.,—yX,)

d
T E( mdt -z mdf —EE(ZX —xZe)

A E—t—z(y-m—dt—-z-ma—i->=22(yz,—z Y.

or, in vector notation: 2

e L o= F; Lxrs mv=FEF

F being the resultant of all the exterior forces applied to the system considered; =m v the geomet-
rical sum of the linear moments of the system; = r.mv the resultant moment of momentum of the
system; R-F the resultant moment of all the exterior forces; these last moments being taken
relative to a point invariably connected to the absolute reference system.

Let us consider a fluid mass in a steady state of motion, and let us apply the above-mentioned
theorems to the portion of a stream tube included between: two of its orthogonal sections §, and
8,. Let us calculate the increment of the fluid momentum included between those sections.
If, at the moment ¢ the fluid occupies the portion of the tube between S, and S,, at the moment
¢t + dt this same fluid mass will occupy the portion S/, 8’, of the stream tube (see Fig. 36). The
motion being steady, the momentum of the fluid mass (IIT) common to both volumes 8, 8; and
8, 8’, will remain invariable. The increment of the momentum of the fluid mass between
8, and 8, will thus be equal to the difference of the momentum of the fluid mass IT and I. This
la.st difference is equal to

2 (v, mydt — v, - m,dt) = ALZ, (M, —mw,)

1 See “ Traité de mecanique rationelle,” Tome IT, me Edition, par M. Paul Appell, pp. 19 et 24,
* For vectors I use the notation £—a horizontal line over the letter representing the vector; for the vector product the notation 4~ B-—a hori-

zontal line over both vectors of the product; for the scalar product the notation 4~ B that is, the same notation as for the algebraical product of
two scalar quantities.

80
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where m, represents the fluid mass which flows in a unit of time through an element ds of section
8,; v, the flow velocity at the same element, with similar notations for S,. We thus have

@) L 2= 3 (s — )

By a fully analogous reasoning we find

(3) . % E r -mv= z (”‘zm”z - rl.mq};)

F16 36. ' Fi6. 37
Let M be the total fluid mass which flows in a unit of time through the stream tube con-
sidered, and let us define two vectors V, and V, by the tollowing relations:
4) MV, = Exmx ' Mv, =_z"_772_’;z
B,- MV,=2Z,7-mv, R, MV,= Z r,-myv,

When, to a sufficient approximation, v, and v, can be considered as uniform in the whole section
of 8, and S, we shall have

_ Viev,; V=,
the vectors V, and V, being applied to the centers of mass of §, and 8,.
On account of the relations (2), (3), and (4) the equations (1) take the form
M Vz - 'W: = F
R, MV,-R,-MV,=R.F

or
F+ MV,— MV,=0,
. R-F+R, - MV,—R,-MV,=0,
and this brings us to the following theorem:
For a fluid mass in steady motion, the resultant wrench of all the exterior forces applied to a
portion of a stream tube limited by two cross sections and of the resultant screw of the anflow momentum
(the outflow momentum having to be taken in the reverse sense) is equal to zero. (See fig. 37").

1 It is supposed on this figure that the resuitant screw of the exterior forces is reduced to a resultant foree.
132025—19—6
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~ In the application of this theorem special attention must be paid to the importance of
taking account of all the exterior forces. For a stream tube portion these exterior forces are not
only the normal pressures, but also the tangential stresses exercised on its boundary surface.

As the preceding theorem can be applied to each stream tube, it will be easy to see that
we can also apply it to any system of stream tubes. We are thus brought to the following
theorem: '

For a fluid mass in steady motion, the resultant of the resultant wrench of all the exterior forces
applied to a portion of the fluid mass inclosed in any closed surface and of the resultant screw of the
inflow momentum (the outflow momentum having to be taken in a reverse sense) is equal to zero.

When one or several bodies are plunged in the fluid mass.contained in the closed surface
considered, the pressures of the bodies on the fluid have to be considered as exterior forces for the
fluid mass considered. '



) NOTE I
GENERALIZATION OF BERNOUILLI'S THEOREM.

For the determination of the pressures in a fluid, we possess the Bernouilli theorem, which
furnishes us the law of variation of pressure along a stream line and also along a vortex line. We
also know that the Bernouilli theorem is applicable to the whole fluid, considering the Bernouilli
constant as invariable, when the fluid motion is irrotational. But in the general case, when we
go from one stream line to another, the Bernouilli constant changes its value. What is the law
of variation of the Bernouilli constant in the whole fluid mass in the general case? It is the
solution of this question that the present note gives. We so arrive at the general solution of
the problem of the pressure distribution in a fluid mass.

Let us consider a fluid mass in a steady state of motion. Let us consider in this fluid mass

the stream line curves and also two other families of fundamental curves: the normal lines,
defined by the property that the tangent at each point to those curves coincides with the prin-
cipal normal of the stream line through this point, and the binormal lines, defined by the prop-
erty that the tangent at each point coincides with the binormal to the corresponding stream
line. The stream lines, the normal lines, and the binormal lines form a system of triorthogonal
curves.! : :
Let us consider a fluid element contained in the elementary parallelepiped, whose edges
dr, dv, dB are respectively directed along the stream lines, the normal lines, and the binormal
lines. On these curves we choose the following positive senses: on the stream lines, the sense
of the velocity of the fluid particles; on the normal lines, the sense toward the center of curv-
ature of the corresponding stream lines; on the binormal lines, the positive sense is chosen in
such a way that the trirectangular trihedral (dr, dv, dB) 1s positive.

1 These curves have for equations:

The stream lines
dz dy dz
. v w
The normal lines
dz dy dz

The binormal lines

In these equations , v, & are the components of the velocity of the fluid and 4, B, C the determinants of the matrix

uw v ow
‘dudodw}

dt dt dt
For example
gl __ e
4 vTu_ wa
expressions in which ?;—:. %—: ’ %—“; are the total derivatives, for example
dv du 00, Qw
e T A A

the motion being steady. . ' a3
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Let us apply the d’Alembert prmcxple to the fluid element. dr, dv, dB and let us consider,
for the sake of simplicity, the fluid as incompressible and having no weight (see fig. 38). The
resultant of the exterior pressure on the fluid element has for components:

%z v ag slong d:
~ %24 v g slong dv

..ggdr dv d@ along.d6

p being the pressure at the point considered.

7’
! 4
-~
] 1 -
t ! r”
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- z :
- et > - e
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,I
4
Fie. 38

-

The resultant of the forces of inertia applied to that element has for components

14

—73° dr dv dp along dr

- -? 3 dr dv dp along dv

0 along dg

8 being the density of the fluid at the point considered, V the velocity and p the radius of the

principal curvature.
According to the d’Alembert prmclple we must have

op , AV ,
1) o> +5W =0
@) ‘ —1’+a———o

o
3) -a—é=0

This system of relations represents the equations of motion of the fluid referred to the tri-
orthogonal curvilinear system of stream lines; normal lines, and binormal lines, which can be
called the natural curvilinear coordinates of the fluid, or, shorter, the natural coordinates of the

Sluad.
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1. The equation (1) brings us directly to the Bernouilli theoren; we have

op, 4V _dp ,dVir_2p, ,pdV _
_b_'-r+6—(§_—br+6 dr d —b'r+5VE?—O.

and integrating along a stream line, we get

e | p+iy=0

a relation which constitutes the Bernouilli theotem, €' being the Bernouilli constant.

'II. The equation (2) gives us the distribution of pressure along the normal lines. Inte«
‘grating this equation along a normal line, we get

2
5) p+fa Yp—dv-—-O

This last equation is susceptible of the following important transformation: !

Let us designate by w., v, ws the components of the vortex and by 7V, V, Vs the
components of the resultant velocity V along the directions dr, dv, dB, at the point considered.
We have .

V. =V; V, =0; Vs =0

The relations between the double of the components of the vortex @ and the components of
the velocity are given by the determinants of the matrix

2 2 92
(6) ) or Ov OB
v, V., Vg
we thus have
oV, oV,
@ 2wp = dr o
“or
oV, _ oV, oV
® B s - v

1 By aid of relation (5) the pressure distribution in a slip stream cross section as $”, for example, can be calculated. For such a calcuiation
we can admit as a first approximation that the elements of the trajectories of the fluid particles in section §” are elements of cylindrical helicoidal
- eurves. 'Under such conditious in the section S” the normal lines will be radial straight lines normal to the screw axis and we will have

dy =dr”
and

.L.- » ”
= odta’ W” coS am=r"w

 being the iclination of the elements of the helicoidal trajectories to the plane of serew rotation and W” the velocity of the fluid particles in
the section §”. Substituting these values fn equation (5) from above we get:

p= po—ﬁf"m”df"

pepo— 5 [0

where po i3 the pressure on the boundary surface of the slip strearn, 8 the fluid density considered constant for reasons aiready mentioned.
Knowing the law of distributfon of «” in the section S*, the curve of 3»"%/2 will be traced asa function of r*2. The quadrature of the surface
limited by this curve will give the law of pressure distribution in a cross section. The general course of such a pressure distribution i3 repre-
sented on figure 2 of the first chapter. For a more accurate calculation it would be necessary to know the radii of principal curvature of the
stream lines along & normal line.
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On the other hand (see Fig. 39) -

oV, Vde V
9) . or or »p
d6 being the contingence .angle. Substituting this last value of a;:’ in the relation (8), for an
integration along a normal line we get
av

(10). dv=

— —2wg

p

and substituting this last value of dv in equation (5), we get

(1D p+ _'SV‘”: =C
1-2y

Fi6. 39.
The integral of this last relation is susceptible of the following transformation:

. . o
deV =f5VdV[l—(l—2p—Vg)+(l-2pT;

9,98 wp
1 2PV ,1—'2p7
sVaV-2 pi;
1 —2p°I—7
svVdv
=§.2V_’_ v
2pwg
and equation (11) takes the form
5V sVdv
(12) Pt = C+ |4 1
o~
pwp

which fixes the distribution of pressure along the normal lines.

We easily see that the last equation has the form of the Bernouilli equation, only the integral
which figures in the second member determines the variation of the Bernouilli constant when we go
Jrom one stream line to another along a normal line.
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If we put
VvV
(13) aC= | TV
2pwp
equation (12) takes the form
2 .
(14) p+il=0+ac

We now see it is sufficient that ws=0 along a normal line—which means that on the’
normal line considered the vortex w is disposed in the contingence plane—for the integral AC to
be equal to zero and the Bornouilli constant to be invariable along this notmal line. It is evi-
dent that wg is zero when w=0. ' ‘

The integral AC can be written in the form

sV \
(15) A= |11 N
2pwp V

and is then susceptible of the following geometrical interpretation: The denominator of this
integral represents the difference between the inverse of the speed which the fluid particle would
have if rotating with the angular velocity 2wg around the center of curvature of its instanta-
neous position and the inverse of the velocity V of the particle.

III. The integration of equation (3) along the binormal lines leads directly to the con-
clusion that along those lines '
(16) p=const

that is to say, in the case of a non-heavy Sfluid, the binormal lines are isobars. It will be easily seen
that in the case of a heavy fluid the distribution of pressure along the binormal lines will be the same
as if the fluid were immobile.

We also see that for the case of irrotational motion of a fluid the binormal lines are also the
limes of constant velocities, the Bernouilli theorem being applicable to the whole fluid mass.

The system of relations (11), (12), and (13) fully determines in the general case the dis-
tribution of pressures in.a fluid mass in motion. This system of relations leads us to the
following consequences, which I will indicate in general outlines:

1. Tt is enough to know the distribution of pressure along a surface cutting all the binormal lines
in order to know the distribution of pressure in the whole fluid mass.

This proposition is a direct consequence of- the fact that the pressure is constant along a
binormal line. _

II. On both sides of a vortex layer, even thin, there can exist a difference of pressure whiach can
be of sensidle value.

To convince ourselves of such a possibility, it is sufficient to represent a vortex layer in

which the quantity
‘f -2 pws

has a small value inside the layer, which can happen without V or ws having excessive values.
Then. when traversing the layer along ® normal line, the integral
’ sVdV
V—2pws

_can have a.la.rge value and consequently, according to formula (11) the difference of pressure
‘on the two sides of the layer will be sensible. :
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The conception of a thin vortex layer maintaining sensible differences of pressure allows one
to understand the phenomena which take place in the slip stream created by the rotation of a
propeller. Let us follow a stream line in the slip stream (see fig. 40). When we reach a point,
such as B, disposed before the propeller, the pressure p must necessarily be lower than the
exterior pressure p,, because the velocity is all the time increasing as we approach the propeller
and at points such as A, and A, we have pressures very close to the pressure p. But when we
go through the plane of screw rotation, the pressure increases and at a point such as (' disposed

directly behind the propeller, the pressure p’ is generally greater than the exterior pressure.
It would be difficult to conceive the existence of a difference of pressures p’ and p at points C
and 4,, if it were not for the vortex layer, which consequently must constitute the surface of
the slip stream created by the screw, and which we know capable of maintaining differences of
pressure. Without the knowledge of the existence of the vortex layer forming the surface of
the slip stream the pressure distribution around a propeller would be difficult to conceive. The -
exact configuration of the boundary surface of the slip stream demands further investigations.

.



NOTE IIL
SHORT SUMMARY OF THE EMPIRICAL LAWS OF FLUID RESISTANCE OF AEROFOILS.

Let us consider a cylindrical surface generated by a rectilinear generatrix moving parallel
to itself along a plane contour formed by two intersecting curve segments. Such surfaces are
generally called aerofoils in aerodynamics. The orthogonal section of the aerofoil is called its
profile. On figure 41 is represented in plane and profile such an aerofoil of rectangular peri-
meter of breadth b and span L. '

Let us consider an aerofoil plunged in a fluid medium and moving in the last, normally to
its generatrices, with a uniform and rectilinear velocity W, or let us admit that a fluid current
of uniform velocity W is directed in an inverse sense on the aerofoil maintained immobile.
In both cases, on account of the principle of relativity
\ of hydrodynamics, the aerofoil will be acted on by a re-

sultant fluid resistance B. When the aerofoil has a plane
~ZITTIZIimzz--- of symmetry normal to its generatrices and the flow

_________________ velocity W is parallel to this plane, the fluid resistance

2 -————-———-----= Ris then disposed in the plane of symmetry.

—— — —— — —

_____ B gegmp—— The fluid resistance B of an aerofoil obeys the follow-

—-—=-T-I-IT7TICIC ing empirical laws:

_______________ 1. R is proportional to the area A of the aerofoil.

- -

——

---------- 2. R is proportiotial to the square of the velocity W-

3. R is a function of the orientation of the aerofoil re-
lative to the flow velocity “W-
____________________________ 1. Ris proportional to the fluid density 9.

fmmemmemsmTTTST oo These empirical laws are submitted to the following

TmTTITITTTITTTTTIUTL restrictions: ) ' ’
et T emmes—cemmmme—e— The proportionality of the resistance R to the area 4
------------------ ~  holds true only for aerofoils of similar perimeters and of
the same order of size. If we imagine a series of aero-

______________________ foils of breadth b whose span L goes onl increasing, it will
--------------------------- be found that the ratio of R to 4 tends toward a certain
""""""" limit when the aspect ratio L/b increases. Practically

this limit is already reached for values of the aspect
ratio near five or six. The existence of a limit for the ratio R/A depending upon the
aspect ratio is due to the fact that the flow runs off, as it were, from aerofoil tips. But
with increasing aspect ratio the tip influence rapidly decreases and the ratio RB/A tends to
its limiting value corresponding to an aerofoil with infinite aspeet ratio. Thus, for a suflicient
aspect ratio all area elements like A4 will be in practically identical flow conditions and the
total fluid resistance I2 can be considered as the sum of equal partial resistances AR due to
ccch element AA (see fig. 41).

The proportionality of the fuid resistance B to the square of the velocity W is true only
for variations of W in certain intervals. The component Ry of B along W is generally called
drag, and the component R, of R along the normal to Wis called Zift. It has already been
observed by experiment that the ratio R,/ W* does not vary much with W, but that the ratio
R,/ W decreases with increasing W.

89
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As for the dependence of resistance R upon the orientation of the aerofoil in the flow,
the following facts are to be noted: There exist in general four orientations of the aerofoil in the
flow for which the resistance R reduces to the drag R, only. I call zero plane ! the plane parallel
to the aerofoil generatrices and containing B when R,=0. It is by the orientation of the
zero plane corresponding to the entering edge that we shall fix the orientation of the aerofoil
relative to the flow. We will call angle of attack or incidence and will designate by 4 the acute
angle between the velocity W and the zero plane adopted. We shall call zero line the trace of
the zero plane in the plane of symmetry (see fig. 42).

At the present time it is customary to fix the orientation of aerofoils relative to the flow by
the orientation of the chord of their profile. It must be noted that the notion of a chord is
defined in geometry only in relation to arcs of curves and in reference to an serofoil it needs a

special definition. For a profile such as the
one represented in figure 43a the chord instinct
ively adopted is the chord common to both
arcs limiting the profile. But for a profile
such as the one represented in figure 43b we
can draw two such chords. Finally, for a pro-
file such as the one of figure 43¢ any straight
line crossing the profile could be with equal
propriety adopted as the chord. We thus see
that what is commonly called the chord of a
profile is in reality a ‘straight line arbitrarily
chosen. When it concerns the experimental
measurement of fluid resistance of aerofoils,"
the more convenient reference line has to be
taken. But when we wish to proceed to the
comparison of the results obtained, it is nec-
essary to have a standard reference line whose
definition is based on aerodynamical or hydro-
. dynamical facts. The zero line introduced in
the study of aerofoils by Paul Painlevé consti-
tutes such a uniform basis for comparisons. The right understanding of the above explanation
is of particular importance for the blade-screw theory. The conception of effective pitch, which
is a direct consequence of the notion of zero line, at once clears up many mlaunderstandmgs,
such as negative slip, for example.
Finally, the fluid resistance is proportional to the fluid densmv 5. This resistance thus
depends upon the temperature and pressure of the fluid considered. '
' We thus see that the fluid resistance R of an aerofoil can be expressed by the formula

(1 R=kpAW2= K,AW?
with .
ki6 = K,;

FiG. 42!

In this formula, k; is an empirical function of the angle of attack which depends upon the
perimeter and the aerofoil profile and upon the kind of fluid considered; A4 is the area of the
aerofoil, or speaking more exactly, the area of the projection of the aerofoil on the zero plane;
W is the flow velocity relative to the aerofoil. The formula itself is true only for & certain inter-
va.l of velocxty variation.

1 The zero plsnes havo beon introduced into the qtudv oi‘ 1awa of air resistance of aerofoils hy Paul Pamlez é, Wi ho callod them ¢ ‘ﬂctmous planes "
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For small angles of attack we can, with 2 sufficient approximation, adopt

@) © R=TsAWx— KAW
with | k=K

For most aerofoils moving in air the coefficient & has the mean value
i
3) a5 =0,04

the angle i being expressed in degrees, the area A in square meters, the velocity W in meters
‘per second, and the resistance in kilograms. For mean conditions of temperature and pressure
the coefficient K has, thus, for its mean value

1
(4) - K="F5=0,04.0,125=0,005 =555

All the foregoing relates to the magnitude of the fluid resistance R. As for the position and
orientation of the fluid resistance E of aerofoils the following takes place:

FIG. 433, ‘ FIG. 43b. ' Fi6. 43¢.

We will fix the orientation of B by the angle this force makes either with the zero plane.
or with the normal to the zero plane. The first of these angles will be designated by 8, the sec-
ond by By or Br. The senses adopted as positive for these angles are represented in figure 42,
These three angles are connected by the relations )

(5) ‘ 6H=Z,f—6'=7r—eT

In cases where no confusion will be possible, we will simply write 8 instead of 8y or Br.

We will fix the position of the resistance R relative to the aerofoil by the distance of its
point of intersection with the zero plane counted from the projection of the entering edge on
the zero plane and will call this point center of pressure. '

For intervals of variation of the velocity W not too large, the angle B and the position of the center
of pressure are independent of the value of W and are Functions of the angle of attack 1 only.

When the center of pressure is defined as the intersection of the fluid resistance R and the
chord of the profile, this last center of pressure moves into_infinity for a certain value of the
angle of attack. This takes place at the moment when K is parallel to the chord. Such a
displacement of the center of pressure is due only to an inappropriate definition. When our
definition of the center of pressure is adopted, this point tends toward a definite limit when
the angle of attack tends toward zero:
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In experimental aerodymanics it is customary to consider the fluid resistance & decomposed
nto its two components the drag B, and the lift R,. We have :

R.=R sin (Bg+9) = K,AW* sin (8,+1)
R,=R cos (By+1)= K,AW? cos (By+i)

When the angle 8y is a function of the angle of attack only, we can write

(6) R,= K AWz
7 ) R,= K, AW:
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expressions in which K,—called drag coefficient—and K,—called lift coefficient-—are functions
of the angle of attack ¢ only (for given conditions of temperature and pressure). The quantities
K, and By are connected with the coefficients K, and_ K, by the obvious relations:

® By = arctg —%'— i
® | D )

The following figures give a general idea of the course of variation of the empirical functions
K; and B for the case of aerofoils moving in air.

Figure 44 gives the curves of K; and 8’ as functions of the angle of attack i for a flaf plate.
The empirical function K; follows very nearly a linear law for the interval of small values of the
angle of attack. The ratio A K;/Ai is larger for small values of i than for large values of the last.
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For incressing values of the angle of attack, starting from zero degrees, g’ at first increases
very rapidly, but afterwards remains very nearly equal to 90° for 10°<i< 170°.

In figure 45 is represented the empirical function 8 for a plano-convex profile. The line in
dots in that figure corresponds to the flat plate. For a plano-convex profile the angle 8 rapidly
reaches the value zero as 4 increases from zero; afterwards its variation is small. We will
designate by 4’ the value of the angle of attack for which =0. This angle of attack ¢’ is an
important characteristic of a given profile in relation:to the efficiency which can be expected
from such a profile when used as a blade section. In figure 46 is represented the curve of K
for a plano-convex profile; the curve in dots corresponds to the flat plate.

For most aerofoil profiles the empirical functions K, and 8 have the same course of varia-
tion. Inmagnitude the fluid resistance R follows a nearly linear law for small values of the angle
of attack; for larger values of the angle of attack the variations of R are more moderate. In.
orientation, for increasing values of the angle of attack, the line of action of the fluid resistance
R very rapidly rises out of the zero plane and afterwards remains sensibly normal to the zero
plane. This general character of variation of the fluid resistance in magnitude and orientation
is of first importance for the properties of blade screws.

The fluid resistance B of an aerofoil is the consequence of very complicated hydrodynamical -
phenomena which take place in the fluid around the aerofoil and whose principal character-
istics are: : .

A. Above the aerofoil we have a decrease of pressure; below, an increase. For most
aerofoils the decrease of pressure gbove is greater than the increase below; so that the larger
part of the fluid resistance is due to a suction on the upper surface of the aerofoil.

B. From the tips of an aerofoil run off vortices called tip vortices. .

C. Behind the aerofoil the flow is generally not steady, but periodical. When measuring
the fluid resistance of an aerofoil disposed in the wake of another the flow in the wake appears
as deflected downwards.

For more details about all these questions, see the Author's “Introduction to the Study
of the Laws of Air Resistance of Aerofoils.”



NOTE IV.
" GENERALIZATION AND GENERAL DISCUSSION OF KUTTA’S THEOREM ON CIRCULATION.

The circulation theorem discussed in the present note was first indicated for a particular
case by W. M. Kutta.! Soon afterwards, Kutta > and Joukowski * recognized the generality
of the theorem. This theorem is announced as follows:

When a rectilinear and uniform fluid current, having at infinity the velocity V7, JSlows normally
to the generatriz of an infinite cylinder of any section, and when the circulation along the contour
embracing the cylinder and situated in the plane of one of its orthogonal sections has a JSinite value
I, the component R, of the resultant pressure of the fluid on the eylinder, taken along the normal
to the velocity and referred to the unit of length of the last is equal to the product of the velocity V,
the circulation I and the density & of the fluid; the sense from R, to V is coincident with the sens.
of the eirculation. :

According to this theorem, the lift experienced per unit length of the cylinder is expressed

by the following formula .
R,=38VI

We shall establish two fundamental and quite general relations from which the circulation
theorem will appear as a particular case.

. X
F16. 47,

Let us embrace the infinite cylinder considered by any contour disposed in the plane of
one of its orthogonal sections. Let W be the velocity of the fluid at the point (z, ¥) of the
contour; u and v the components of the velocity W along the axis (see fig. 47); dz and dy the
projections of one element of the contour on the axis. Let us designate by X and Y the com-
ponents of the resultant force of all the exterior forces applied to the fluid contained in the
contour considered, and let us apply the theorem of momentum to the motion of the portion
of the fluid considered. We thus have

(1) - Y =f!vdm; X=fudm

i W. M. Kutte, “Illustrirte Aeronautische Mitteilungen,” 1902,

* W. M. Rutta, “8itzungsberichte der Koniglichen Bayerischen Acudemie der ‘Wissenschaften,” Munich, 1910 and 1911,

3 N. E. Joukowski, * Geometrische Untersuchungen {iber die Kutta’sche Stromung,” Moskow, 1910,1911. See also his course, ‘“ Aerodynamique,
Paris, 1916, p. 139, .
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the integrals being taken around the contour and dm representing the fluid mass which flows
per unit of time through one element of the contour into the exterior space. Let us designate
by ¢ the current function. By-the definition of that function, we have

2 dm =8dy
and also L '

' ¥ g+
3) : d¢=ud'y—'vdx—ay dfy+axdz
with

- R 4
@) : u_by’ LAY :
Substituting in the first of the equations, (1), the value of dm taken from equation (2) we get

(5) Y = [ovdy = [v(udy — viz)

or, identically,
Y= f&[v (udy —vdz) +v’dz —u’dx]
~ [suudz +vdy) — [s(u* +v)dz

and remarking that

(6) ude +vdy=dl

is the flow dI along an element of our contour, we get

) Y = [oudl — [ Wdz

and finally, integrating by parts the first term of the second member of that relation, we get
®) Y = [oul ~ fs1du] - [s Wda

which relation holds for any contour and constitutes the first of the relations we wished to get.
Applying that relation (8) to a contour along which

v=0; u=V=const
~ we easily see that we have

) {s1du=0; [$Wdz=0
and consequently ¥ reduces to
(10) ' Y =8VI

1 being the circulation around the contour in the direction of rotation of the X axisinto the ¥
axis. :
Following the same method with the second of the equations (1), we get

(11) X = [oudy = [u(udy —vdz) §

= f 3 (urdy —wvdz —vidy +v*dy
= f3(u? +v*)dy — [ov(udz +vdy)

(12) ' X = (s Wedy~ fovdl
(13) - X = f&W’dy—[f&vI—fvldv]

the last of these equations constitutes the second relation we wished.
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Applying this last relation to a contour along which

v=0;u=V=const
we easily see that we have
(14) X =0,

all three of the terms of the second member of the relation (13) being equal to zero.

Let us now stop tonote the exactinterpretation of the relations (10) and (14). Ashasbeenindi-
cated, X and Y arethe componentsof theresultant forces of all the exteriorforces applied to the fluid
volume contained in the contour considered. These forces are: first, the pressure of the cylinder
on the fluid, which are equal and opposite to the pressures of the fluid on the cylinder; second,
the exterior pressures on the contour. Let us consider a contour on which »=0; 4= V=const,
and which is limited in one sense by two stream lines sufficiently distant from the cylinder for
them to be parallel to the X axis, and in the other sense by two lines perpendicular to these
stream lines. Along the stream lines parallel to the X axis we can consider the Bernouilli
constant as being effectively constant and in consequence the pressure p constant and equal
to the exterior pressure p,, the velocity V being constant. Under this condition the component
along-the Y axis of the exterior pressures on our contour will be zero, and Y will represent the
reversed component of the pressures on our immersed cylinder. The expression (10) is conse-
quently equal to the negative lift B, of the fluid on dur cylinder. But if we consider a stream
line which flows near our cylinder, there must be some interior losses through viscosity along
this stream line because each immersed body gives rise to drag. The Bernouilli constant along
such a stream line must necessarily decrease, and when we reach the side of the contour parallel:
to the Y axis where the velocity V has already taken its original value, the pressure there will
not take its original value p,, the Bernouilli constant having decreased. The relation (14)
consequently expresses the fact that the component along the X axisof the resultant of the
exterior pressures on our contour is exactly equal to the drag, and this holds in the case when
the sides of our contour are moved to infinity. In the last case, the exterior pressures tend to
their limiting value p,, but this is not reached, and the integral

fpdy=Rz

always remains exactly equal to the drag. Kutta and Joukowski, who were the first to estab-
lish the relations (10) and (14), have limited themselves to the consideration of a perfect fluid.
In that case, having no interior losses, the Bernouilli constant has an invariable value along
any stream line, and relation (14) expresses then the fact that the drag of an immersed cylinder
is zero. But it is absolutely unnecessary to limit ourselves to the perfect fluid, since the theorem
of momentum, of which equations (10) and (14) are direct consequences, is applicable what-
ever the interior forces acting on the system considered are. _

We are thus brought to the general conclusion that for any contour surrounding an im-
mersed cylinder the following general relations must hold:

(15) - [pdz—R,= [sv(udy—vdz) = [oudl— [6 Wdz=[sul— [3Idu] - [s W*dz
(16) . fpdy —-R,= f&u(udy —vdz) = f& Wady —f&fvdI= f& Wady— [6vI— f'uIdfv]
which connect the lift and drag of the cylinder, referred to unit length of the last, with the flow

around this cylinder. In the application of these formulae, three particular cases have to be
distinguished : ' :
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1. The formulae are applied to the contour of the cylinder itself. The contour of the
cylinder being a stream line through which we have no flow, we must have

R,=[pdz; B,=[pdy

which is the case considered in classical hydrodynamics.

II. The formulae are applied to a contour which consists of stream lines and normal lines
(for the definition of these lines see Note II). In that case the integrals which figure in the
second members of the relations (15) and (16) have to be calculated only along the normal
lines. : :

II1. The Kutta case

R,= 8VI; R,=fpd7/

1320?5—19———7



NOTE V.
THE GEOMETky OF BLADE-SCREW DRAWING.

The tracing of the blade-screw drawing is based on some very convenient conventions,
used in practice for a long time, which, however, as far as I know, have never been stated -
exactly.

For the tracing of a drawing of a blade-screw a reference radius has first,to be chosen, and
on this several guiding poinis are taken through which are drawn axes, which we will call
guiding axes, parallel to the screw axis. Through the guiding axes are passed planes normal
to the reference radius, which we will call sectional planes. The plane normal to the screw
axis and containing the reference radius will be called the plane of screw rotation, and the plane
containing the screw axis and the reference radius will be called the meridional plane. In .
principle the reference radius may be chosen arbitrarily—it is only necessary that the sectional
planes cut the screw blade—but it is convenient for all the guiding axes to pierce the screw-
blade as far as possible. As for the number of auldmg points, it is sufficient practically to
adopt from four to ten of them.

The drawing of a blade screw may be established either by plane blade sections or by
cylindrical blade sections. The method adopted depends upon the process of screw’ manu-
facturing used. For some blade screws the difference between both methods of screw drawing
is negligible. If it is a drawing by plane blade sections that we wish to have, it is the blade
section by the sectional planes that has to be considered. If it is a drawing by cylindrical
sections that we wish, we then have to. pass cylindrical surfaces, having for axes the screw
axis, going through the guiding points and. tangent to the sectional planes, and to consider
the sections of the blades by these cylindrical surfaces, developed in the sectional planes. All
of the following relates to both methods of screw drawing.

Figure 48a gives a general view of a screw blade whose reference radius OR is supposed
to go through the point of the blade farthest from the screw axis and is entirely contained in
the lower side of the blade. For the sake of clearness in the drawing only the guiding points
p, and p, are represented, through which are traced the guiding axes e, a,” and @, a,”. The
plane blade sections are designated by s, s,” and s, s,’, and the cylindrical blade sections by
¢, ¢, and ¢, ¢,’. It is assumed for simplicity that the cylindrical blade sections developed in
the sectional planes coincide with the plane blade sections. Let us extend the chords of the
blade sections considered and take on the intersections of the sectional planes and the screw
rotation plane lengths such as p, l;: p, 1,5 p, 1,; p, I, .. ... __, respectively, equal to r,, 277,
7y 277, ......; the quantities r, and 7, being the distances of the guiding points from the
screw axis. The chord of each section will cut off, on the perpendiculars to the screw rotation
plane through points such as I’ and I, lengths respectively equal to H and H/2r designating
by H the constructive pitch of the sections considered.

First generation of the screw drawing.—The sectional planes, containing the blade sections,
are turned through an angle of 90° around the guiding axis in such a way that the heights
H /2%, H,/27, ete., come on’the screw axis. The sections s, s,"; 8, 8, .. .- ... .. will take the
positions ¢, ¢,’; ¢, t," .. _....... and will all be brought into the meridional plane. In figure

! When a guiding axis does not pierce the blade, it is the extension of the chord of a section that meets that axis: it is from this last point that
the construction indicated above has to be made in order to find the pitch.

98 ' .
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48a it has been assumed that we have to do'with a blade screw of constant constructive pitch,
and thus H,/2r=H,/2x .. .. _. .. ... Insucha way is obtained the screw drawing, represented
on figure 48b, whose geometrical properties are evident. Thus when we go from the sections
of the blades to the sections on the screw drawing the projections a, @,”; @, a,” of the blades
on the meridional plane remain unchanged, but the projections of these same blade sections
of the screw on the screw rotation plane are turned through 90°. (See fig. 48a.) The screw
drawing allows one to see at once all the blade dimensions. If we project, on the screw draw-
ing, each section on the corresponding guiding axis we will get the projection of the blade on
the meridional plane; if we project these same sections on -the reference radius and turn these
projections through 90° we will get the prOJectlon of the blade on the screw rotation plane. (See
fig. 48d.)

The screw drawmg is generally completed by conventional represent,atlon of the distribu-
tion of the maximum blade thickness along the blade. (See fig. 48c.)

By aid of the screw drawing, one can directly obtain the templates necessary for screw
manufacturing. It is sufficient for that purpose to trace on the screw drawing two straight
lines parallel to the reference radius. On figure 48c templates, one above and one below,
have been traced. The teroplates corresponding to one blade face fixed normally to a board
on which is traced the projectlon of the blade on the screw rotation plane will give a space
picture of the blade face (See iig. 48e.) 1f we make use of cylindrical blade sectlons, the tem-
plates have first to be bent according to the corresponding radii.

In figure 49 is represented the cr«-:nneral case of the screw drawing; the screw blade is assumed
to have a general curved-down uhape All the details of this drawing are self-evident.

Second generation of the screw drawing.—Instead of rotating the sectional planes, we can
bring them to coincide by a translation parallel to themselves, effected in such a way that
the bases I,, .. .. .. of the height H,/2w, H,/2x__ __ __ __ described in the screw rotation plane
a straight line going through the screw axis and inclined at 45° to the reference radius (See
fig. 50.) This construction, as well as the foregoing, gives directly the connection between
the blade screw and the screw drawing. In figure 50°it has been assumed that the constructive
pitches of the different sections increase from boss to blade tip.



NOTE VL
SOME CRITICAL REMARKS ABOUT THE BLADE-SCREW INTEGRAL THEORY.

As has already been mentioned in the introduction to the present memoir, the general
blade-screw theory can only be an integral theory. In the present note I will give the general
outlines of the blade-screw integral theory. This will allow one to judge better the blade-
serew differential theory developed in the actual memoir.

In its most general form the blade-screw problem can be stated as follows: Let us con-
sider a blade screw rotating in a fuid with an angular velocity & around its axis and advancing
with a speed V along that axis, and let us suppose, for one moment, our blade-screw problem
to be fully solved; that is, let us assume that we know the exact distribution of the partial
thrust AQ and the partial torque AC along the screw blades. Two sides of the problem have
to be distinguished. First of all, knowing AQ and AC as tunctions of r we have to find the
exact flow around the blade screw. This will be the hydrodynamical part of the problem.
Afterwards, having found the flow and thus knowing exactly the stream running on the screw
blades, we can seek for the dimensions and shape which have to be given to the blades, so that

_they realize the assumed system of partial thrust AQ and partial torque AC. This is the tech-
nical part of the problem. When the assumed system of AQ and AC lie in a practically possible
range, and when we know the flow around the screw, it is always possible to give to its blades
such size and shape that, for example, the assumed AQ will be realized, but the AC necessary
to produce the ‘assumed AQ can come out different frum the assumed values. All depends
upon the losses which will take place. Under such conditions we will be brought to modify
the first assumed system of AC, recalculate the flow and introduce changes in the size and
shape of the blades, and so step by step approach nearer to the conditions of the problem.
In this way, by a successive determination of the flow and calculation of the size and shape
of the screw blades, redetermination of the flow and recalculation of the blades, we can reach
an agreement between the hydrodynamical and technical parts of the blade-screw problem.
The foregoing constitutes the most general statement of the blade-screw problem.

Let us consider the hydrodynamical part of the problem. We will make only two as-
sumptions: We will neglect the periodicity of the velocities in the slip stream and neglect the
interior losses between the sections SgS,, SS and §’8’, S”8". These losses are very small in
comparison with the other losses which occur in blade-screw working; and cotrections for the
periodicity of the slip stream velocities can always be introduced post factum. After the de-
tailed explanations which were given in the first chapter of this memoir, I will allow myself
to be very brief in the following statement of the general scheme of the most general blade-
serew theory:

Condition of flow continuity in the slip stream
(1) : AM=3A8(V+v)=38a8"(V+v")

From which follows
AS < V4o rdr

(@) T =
. AS V+ov r'dr
We also have .

(3) _ o Al=AMr =3A8(V+o)r
4) . Al=AMr"?=38A8(V +v)r"*
and

A 1 7.2
G . . INGSE
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The theorems of momentum and moments of momentum applied to the slip stream lead
to the relations

(6) Q=EAM'v"—2AS”(p,,—p”)=F
) O=2Al"w" =2Alw' = Ce

and also .

8) ' © AQ=AMY" —AS" (p,—D")
9 . AC=Al"w" =Alw’

so that

(10) Q=2AQ; C=3AC

and we also have '

(11) Ap——g—p —-P

In the limiting case the sections SS and §’S’ are considered to be very close together
Accordmg to Note II, the pressure distribution in the section §”8” is glven by the rela- .
tions

(12) pll_= p”c+ P ﬁ&,”ﬁrﬂd’tll
R'
(13) P0=P”c+6ﬁw”zr”dr”
R’
(14) ' Po —.p"c=6Lw"’r”dr”

where p”. is the pressurc in the center of the section §”8” and R” the radius of that section.
Let us apply the Bernouilli theorem to one stream line of the slip stream. In the in-
draught the Bernoullh constant, which we will designate by B, has the value
2
(15) B=p,+2-
When we cross the area swept by the blades of the screw the Bernouilli constant undergoes
an increase equal to

’3
(16) AB=Ap+5rz;
so that in the outdraught the Bernouilli constant has for its value
, 8V AQ b’
a7 . B+AB=p,+ - ++< AST o

Consequently for the section S”S” we must have

& 61‘2 " M ¢$V+fv"2 572072
(18) B+AB=p,+—5- ;’ +8(V+o)w” ‘Z‘S’(Pv Py =p +( : ) 2w

or, after self-evident simplifications,
[/ v " 6"2 14 14 AS i
(19) 5’0'(’0——2—>——w_(w =)= (Po— AS

This last relation is the fundamental characteristic equation of the flow in the slip stream of a
blade screw.
In the hydrodynamlca] part of the blade-screw problem the fundamental varlable isr

D
-l
o=<r=< 5

The data given are the functions AQ and AC. The unknown functions, which have to be found
as functions of r, are
(20) ) 7‘”, P”' w/’ w”’ v, "
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This makes six unknown functions, for the determination of which we have the six equations

” ’ ” ASII
(19) w( -5 =5—’—a23’-(w”—w’)—(po—p )(1— AS)
(21) p”=6f;,’”r"dr”
' | , . AC
(22) @ = V+0v)ASr
(23) ' w"=w'1g—,
AS® ,
(28) B0 spea(Tow Ty o)
' V4o" rdr

$(29) . Vo Trar

with AS =2xrdr and AS” =2wr"dr”

The foregoing system constitutes the fundamental system of equations which fully deter-
mines the flow around the blade screw in the most general case. Owing to the integral rela-
tion (21), the solution of this system of equations can be found only by a method of successive
approximations, and thus is very laborious. Under such conditions it is natural to seek for some
assumptions, which being very olose to the real conditions, could simplify the foregoing system
of equations. For that purpose let us discuss the variation of the second member of the equa-
tion (19), which we will designate by G- -

(26) G= Qs—"fzgi‘(w”—w')—(po—p”) (1——%)

For the tips of the blades we have .
. r” =R’ andp"=po
and consequently "
2, ./
@7 g=02%

(" o)

but as «” > «, we will have A
(28) G>0 and v’ <2v
For the boss we have

r"=0; p"=p"

and thus ' A5
(29) ¢~ (1-%5)
and consequently

(30) G<0 and v >2v

Thus @ is positive at the tips and negative at the boss. Consequently, between tips and boss
there must necessarily exist a blade section for which @=0 and consequently rigorously
31 . v =2 ‘ '

On the other hand, it is easy to see that starting from the blades sections where v” =2v
the quantity G increases generally in-magnitude to tips and to boss. But at tips and boss G
is still a small quantity. In fact, at the tips G = 30r%0" (0" —’), but as w’ has generally a small
value and the difference (v”—«’) is negligible, so far as the radial velocities can be neglected,
G comes out to be small. At the boss G=— (po—D"¢) (1-48"/A8), but the pressure dif-
ference (po— ") being generally negligible, owing to the fact that »” is small, and (1 —AS"/AS)
is in magnitude smaller than the unity, G at the boss is also small.
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Thus it is at boss and tips that the difference between »” and 2v reaches in magnitude its
biggest values, but still here this difference is small.

We are thus brought to the conclusion that in the most general case the flow in the slip
stream is such that very nearly
31 v’ =2
for the whole cross section of the slip stream. This last relation expresses the fact that the
rotation of the fluid in the slip stream has only a very slight influence on the translatory motion
of the same, '

After we have convinced ourselves that the relation (31) holds, it is easy to see that to &
good approximation the flow conditions come out to be similar in the section 8§ and S”S”.
This fact is a direct consequence of the relation (1) for a blade screw working at a fixed point;
in other cases for the similarity of flow conditions it is only necessary for v to be small relative
to V or to have its variations small along the slip stream cross section, as has been shown in the

first chapter of this memoir. We thus can consider, remaining still close to real conditions, that
AS _V4v"  rdr P _Al W

(32) A" Vio T rrar ST =y
and consequently .

(33) (%=r—’,,» or r” =cr

where ¢ is a constant. :
It will now be easy to see from the relation (26) that the condition G=0 for any value of r
between r== 0 to r=D/2 can only be satisfied with
(34) w'=w" and p”=p,
for the whole cross section of the slip stream.
We are thus naturally brought to the hypothesis made in the first chapter of this memoir.
To evaluate, however, the influence that the pressure. difference in the section $”8” can
have on the blade-screw working, one can- proceed as follows: As w” is generally a small quan-
tity, let us neglect its variation along the slip stream cross section. Under such conditions,
from the relation (14) we will find

Po—p* =3

73,72 / R72
Po—p"=5-- 2w '('r—lrz""l)

and on account of the relations _(3‘2) and (33)

w"’(R"z - rllz)
R
or

. » rPw’? AS /D?
(35) Po= P =0—5— o (fm—
The equations (8) and (9) can thus be written ,
: ” o't D?
(36) | 2Q=aaS(VHopr i85 (Zo1)
(37) AC=30A8(V +v)riw’

Comparing now, as in the first chapter, these last values of AQ and AC with those obtained
by the direct consideration of the action of the stream on the screw blades, that is, bringing the
hydrodynamical part of the blade-screw problem into agreement with the technical part, we find

rzwlz D3

SAS(V +v)v” —8A8 5 4’.2—1) =nkdAAW? cos (o +B)
SAS(V+v)r2w’ =nrkbsAA4A W2 sin (p+8)
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Procééding now with these equations exactly as was indicated in the first chapter, we will finally
find .

v rw'? D?
(38) R TC T 4-—7_2-1>~=az

[

rw’ 0 ro”
(39) SV o) —% 8 (¢ +8) = a7y T3V +20)
These last equations are fully similar to the equations (46) and (47) of Chapter I, and only con-
tain the complementary term

2,472 2 2
i (B-1)-oe e o4o-(35-1)
which expresses the influence of the decrease of pressure in the section §”8” produced by the
rotation of the fluid in the slip stream. But as this complementary term appears to be of second
order compared with az tg(e+8), which is a very small quantity in most blade-screw applica-
tions, it comes out to be negligible. ’

We are thus brought to the conclusion that, from the most general standpoint, the only -
system of equations for the blade screw which can be reasonably adopted is the one established
in the first chapter of this memoir.

The following has still to be noted. As far as the race velocity w is concerned, exactly
speaking we have -,

(41 . o=

In fact, by its definition wAC is the work communicated in a unit of time to the fluid by the

blade element considered, in its rotational motion. And this work must be equal to the corre-

sponding rotational kinetic energy of the fluid; that is, wAC=4% Alw" because the corresponding

work vAQ of the thrust has its equivalent in the increase of pressure Ap produced, when cross-

ing the area swept by the screw blades. But as AC=Als" wehave '
wAC=ww’' Al = 3Alw"

and thus

wl
. “=2 ,
But when the radial velocities are neglected we have v’ =, and consequently

R

”n
(42) ' . w 9’2
This gives for w a slightly increased value. . :

When we neglect the decrease of pressure in the section'8”8”, this brings with it a slightly
increased value for AQ, but when simultaneously we use for » the value (42) we obtain a certain
correction of the neglect of the decrease of pressure, because a slightly greater value of w de-
creases slightly the angle of attack ¢, and thus decreases slightly AQ. Under the hypothesis
made the value (42) has also to be adopted for w, in order to have a correct energy balance,
because when the decrease of pressure in section 878" is neglected and thus the translational
motion in the slip stream considered independent of its rotational motion we have

vAQ = }A Mv"?
and consequently we have to take
wAC=3Al"0™

that is, w” =2w. All these last remarks concern only differences of second order.
The foregoing critical discussion of the blade-screw problem, from the most general stand-
point, shows us the value of the system of equations established in the first chapter of this
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memoir. On the other hand, how convenient this system of equations is in its practical use
follows in full evidence from the results obtained in the present memoir.

I will also remark that from a practical standpoint the square of az can be neglected in
many of the formulae of the actual memoir. R

I will finally give a numerical evaluation of the magnitude of the departure from unity
that the ratio 2v/»” can reach., : :

Introducing, in a first approximation, the value (35) of the difference of pressure (po—p”) .
in the relation (19), we get '

"\ rw’?fw” or2w’? / AS D? .
"””(”‘7)"—5“ o )T W‘l)(zrz“l)

and, taking into account the relations (32) and (33), we find

2 72 —p3 2 '
(43) =B &C)<2§"°’25)=E(25’_0’25)
. DZ ,?2 1__ 2
with E==— . ~(____zc )

73 ¢
To find the order of magnitude of the ratio D?%w’2/»"? we will use equations (48) and (49) from
Chapter I. Dividing (49) by (48), we find :

2
—Di"’—~Dz“’2—4(1 +az)? tg* (o + )

;v”z = vz -

Remembering that H =27rtg¢ and considering =20, we get
D*'* 4(1+a2)*H?
v = g Dr
Concerning the ratio (1—¢?)/¢?, we have (1—¢?)/c*=20,05 when advancing and (1—c*)/c*==1 at
a fixed point, so that the quantity E comes out to be of the following order of magnitude: For
a propulsive screw with ¢z=<0,1; H/D==0,75 and (1 — ¢?)/c*=<0,05 we find
' E=0,01 ;

For a helicopter or lifting screw we have az=1; (1 ~¢*)/c>=1 but necessarily H/D small. If
we take H/D==0,3 we find '

E=o0,1
The quantity E reaches its greatest value for a propulsive screw working at a fixed point. With
aze=1; H/D==0,75; (1 —c?)/c2==1. We find

E=0,8 ’
Using the second of these last values we get

We1+0,1 (25-, ~0,25)

For r=0 and r=D/2 we find 2v/v"==0,975 and 2v/v"==1,025; for values of  between »=0 and
r=D/2 the departure of 2v/v” from unity is still less; for 7/D=20,354 we have 2ofp" =1.

The departure of 2v/v” from unity thus does not generally reach 3 p..c. (and this only at
boss and blade tips), and is consequently fully negligible. For a propulsive screw when ad-
vancing with E=0,01, it is absolutely negligible. Only for a propulsive screw working at a
fixed point it may reach, at tips and boss only, 20 p. c., which is still negligible in a first approx-
imation. We thus see in full evidence that the relation

v =2
although being in the general case only an approximate law, constitutes, however, a remark-
able approximation. ‘

GEORGE DE BoTHEZAT.
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